Instrctions set decoding table (8bits instruction): [B;BsBsB4B3B. B1B]
ALU Op : 3bits [B;BsBs] Access Mode : 3bits [B4B3B,] Bus Access : 2bits [B1Bo]
Access Mode

Instructions| Bus
ALU O Access 000 001 010 01 100 101 110 111
(P) [DL.AC [X]AC [Y.DLAC [Y.X.AC [DIL.X [DLY [DLOUT | [Y,X++],0UT
00 (D) MV AC,$dd MV X,$dd MVY$dd | MVOUTS$dd | MV OUTxx,$dd
01(mem) || LDAC[sdd] | LDACIX] | LDACY$dd] | LDAC[YX] | LDX[$dd] | LDY,[Sdd] | LDOUT[$dd] | LDOUTxx[YX]
LD[000]
10 (AC) NOP MV X,AC MV Y,AC MVOUTAC | MV OUTxx,AC
11 (| N) INPUT AC INPUT X INPUT Y INPUT OUT | INPUT OUTxx
00 (D) AND AC,$dd AND X,$dd | ANDY,$dd | AND OUT,$dd | AND OUTxx,$dd
01(mem) || ANDAC,[sdd] | ANDAC,IX] | AND AC,[Y;$dd] | AND AC,[YX] | AND X,[$dd] | AND Y,[$dd] | AND OUT[Sdd] | AND OUTxx[Y,X]
AND[001]
10(AC) No
11 (|N) AND AC,IN AND X,IN ANDY|IN | ANDOUTIN | AND OUTxx,N
00 (D) ORAC,$dd OR X,$dd ORY$dd | OROUTS$dd | OR OUTxx,$dd
01(mem) || ORAC,sdd] | ORAC[X] | ORAC/[YSdd] | ORAG[YX] | ORX[$dd] | ORY[$dd] | OROUT[Sdd] | OROUTxx[YX]
OR[010]
10(AC) o
11 (| N) ORAC,IN ORX,IN ORY,IN OR OUT,IN OR OUTxx,IN
00 (D) XOR AC,$dd XORX,$dd | XORY,$dd | XOROUT$dd | XOR OUTxx,$dd
01(mem) || XORAC[sdd] | XORAC,IX] | XOR AC,[¥;$dd] | XORAC,[YX] | XORX,[$dd] | XOR Y[$dd] | XOR OUT[$dd] | XOR OUTxx,[Y,X]
XOR[011]
10(AC) CLRAC CLRX CLRY CLR OUT CLR OUTxx
11 (| N) XORAC,IN XORX,IN XORY|IN | XOROUTIN | XOROUTxx,N
00 (D) ADD AC,$dd ADD X,$dd | ADDY,$dd | ADD OUT,$dd | ADD OUTxx,$dd
01(mem) || ADD AC[$dd] | ADD AC,X] | ADD AC,[Y,$dd] | ADD AC,[YX] | ADD X,[$dd] | ADD Y,[$dd] | ADD OUT,[Sdd] | ADD OUTxx[Y.X]
ADD[100]
1 O(AC) SLAC SL X SLY SLouT SL OUTxx
11 (|N) ADD AC,IN ADD X,IN ADDYIN | ADDOUTIN | ADD OUTxx,IN
OO(D) SUB AC,$dd SUBX,$dd | SUBYS$dd | SUBOUTS$dd | SUB OUTxx,$dd
01(mem) || SUBAC[sdd] | SUBAC,X] | SUBAC,[YSdd] | SUBAC,[YX] | SUBX[Sdd] | SUB Y,[$dd] | SUB OUT[Sdd] | SUB OUTxx[Y.X]
SUB[101]
10(AC)
11 (| N) SUB AC,IN SUB X,IN SUBYJIN | SUBOUTIN | SUBOUTxx,N
00 (D) ST [$dd],$dd | ST[X],$dd | ST[Y,$dd],$dd | ST [Y,X],$dd i - -
01(mem) || 1o sdar 10 [X]** 10 [Y,$dd]** 10 [Y,X]** 10 $dd** CE* 10 AC* 10 IN**
ST[110]
10 (AC) ST[$ddAC | STIXLAC | ST[Y,$ddlAC | ST[Y,XIAC - -
11 (|N) ST [$dd],IN ST [X],IN ST[Y,$dd]IN | ST[Y,XLIN - -
OO(D) JMP $dd BGT $dd BLT $dd BNE $dd BEQ $dd BGE $dd BLE $dd B $dd
01 (mem) JMP [$dd] BGT [$dd] BLT [$dd] BNE [$dd] BEQ [$dd] BGE [$dd] BLE [$dd] B [$dd]
Bee[111]
10(AC) JMP AC BGT AC BLT AC BNE AC BEQ AC BGE AC BLE AC BAC
11 (|N) JMP IN BGT IN BLTIN BNE IN BEQIN BGE IN BLE IN BIN

* those instructions can be executed on Gigatron but they are not relevant.
** those instructions cannot be executed on Gigatron, so they are salvaged on Megatron for input/output extended mechanism.

*** those 3 instructions are not simulated correctly, should not be used on simulation.

Instructions set:

Instruction

Syntax Description
Set bar character () means or bar character (|) means or
MV MV regast,regs.|$dd MOVE : regast < regs.|$dd
LD LD regast,meMsgrc load : regust <« MeMgr
ST ST memust,regs.|$dd store : memgst < regs.|$dd
INPUT INPUT regast input : regust < regin
AND AND regust,regsc/mems.|$dd |and : regqst < regac and (regsc|mems.|$dd)
OR OR regust,r'€gsc|MeMsc|$dd | or : regast < regac Or (regsc|/mems.|$dd)
XOR XOR regust,regsc|mems|$dd | xor : regust < regac Xor (regs.|/mems:|$dd)
ADD ADD regast,regsc|mems:|$dd | addition : regast < regac + (regsc/mems.|$dd)
SUB SUB regast,regsc|mems.|$dd | substraction : regqst < regac - (regsi|mems|$dd)
SL SL regast Shift Left : regest < AC << 1 (1 bit shift)
CLR CLR regust clear : regast — 0
jump : unconditionnal jump to 16 bits address with segment Y
JMP IMP regs.|mems.|$dd and offset rege/memsqq|$dd
branch : unconditionnal jump to 8 bits address regs|memsgq|
B B regsc|memsu|$dd $dd within the same segment
branch if equal : conditionnal jump to 8 bits address rege|
BEQ BEQ regsc/memsq|$dd memsq|$dd within the same segment if A ==
branch if not equal : conditionnal jump to 8 bits address
BNE BNE regs.|mems.|$dd regs/memsq|$dd within the same segment if A 1= B
branch if greater than : conditionnal jump to 8 bits address
BGT BGT regs.|memsa|$dd regs/memsq|$dd within the same segment if A > B
branch if greater than or equal : conditionnal jump to 8 bits
BGE BGE regsc/memsq[$dd address regs</memsqs|$dd within the same segment if A >= B
branch if less than : conditionnal jump to 8 bits address regs|
BLT BLT regs.|memsu|$dd mems«|$dd within the same segment if A< B
branch if less than or equal : conditionnal jump to 8 bits
BLE BLE regsc|memsu|$dd address regs<memsqs|$dd within the same segment if A <= B
NOP NOP do nothing
|0* 10 regsijmemsqq|$dd Load to Input/Output register : regioc < regsc/memsqq|$dd
CE* CE Control Signal Enable : bring out control signals from regioc

* specific to Megatron.

Megatron:

Megatron is a variant of Gigatron, it was designed to be compatible with Gigatron, and to
be more compact containing less chips. It uses a specific input/output unit to extend the
input/output capabilities of Gigatron, thus a keyboard or other devices can be easily
added. The programmable register IOC (Input/Output Control) is responsible for controlling
whitch device must be used, it's fourth lower nibbles (4 bits) are used to choose thich input
to read from in read instructions, and the uppers which to write at in output instructions.
This register is also used by CE instruction to emit devices control signals like hsync and
vsync for VGA, this register must be programmed depending on how devices are
connected to Megatron.

Usage rules and conditions:

Title Description
user registers 4 user registers : AC, X, Y, OUT (IN register can't be modified)
o o .
2 |AC register the accqmulat(_)r, us_ed for ge_neral purpose, it is implicitly the 1% operand in
every arithmetic/logic operation
. used like offset within memory addressing modes, can't be used like operand
3 | Xregister i
in arithmetic/logic operations
. used like segment within memory addressing modes, can't be used like
4 |Y register e, ; ; .
operand in arithmetic/logic operations
5 |IN register used for input operations
6 | OUT register used fpr output operations, can't be used like operand in arithmetic/logic
operations
OUTxx register is OUT register executing X++
$dd immediate or literal value ex : MV AC,5 (5 is $dd)
regast element of { AC,X,Y,0OUT,0UTxx} (IN can't be destination register)
10 |regsre element of { AC,IN} (X,Y,OUT can't be source register)
11 |memory cell 8 bits memory cells are used to store values
12 |accessing memory the syntax [address] is used to access memory cells
13 | memory address address can be on 8 bits or 16 bits (segment,offset), multiple addressing
modes exist
memory cell used as a source, addressing modes allowed depends on regast
on the same instruction :
14 | meMge. 4 possible addressing modes if regat = AC : [$dd],[X],[Y,$dd],[Y,X]
1 possible addressing mode if regsst = X or Y or OUT : [$dd]
1 possible addressing mode if regasst = OUTxx : [Y,X]
15 | memgst used only within LD, addressing modes are : [$dd],[X],[Y,$dd],[Y,X],[Y,X++]
16 | memsqq memory source used with the addressing mode [$dd]
17 arithmetic/logic include AND, OR, XOR, ADD, SUB, SL, CLR. AC is implicitly the first
operation instructions |operand, thus it is not inserted in the instruction syntax.
18 |sL Shift Left : it's the left shift instruction of the AC by 1 bit. AC is implicit in the
instruction, thus only the destination is indicated in the instruction
19 | bitwise operations and,or,xor are bitwise logical operations (bit by bit)
20 | JMP instruction jump instructions use 16 bits of address to perform a long jump, Y register is
implicitly added to the address like segment part
21 | branch instructions include B, BEQ, BNE, BGT, BGE, BLT, BTE, use 8 bits of address to
perform short jumps within the same segment of 256 bytes
include BEQ, BNE, BGT, BGE, BLT, BTE, they need subtraction instruction
22 | comparative branches | A-B before their execution, the result of the subtraction determines the result
of the condition (A is AC and B depend on the subtract instruction)
. . this instruction does nothing, but must always be added after a jump or a
23 | NOP instruction branch instruction to avoid the pipeline hazard. Not mandatory on Megatron.
. it is an instruction retro compatible version of Gigatron with extended
24 | Megatron . :
input/output mechanism.
25 | req.. reqister* used for 2 purposes, used for holding multiple input/output register write
Gioc G enable signals. And to emit 8 control signals for different devices.
26 |10 and CE instruction® used with regi.c on Megatron Input/Output Unit (IOU) to deal with multiple
devices.

* specific to Megatron.

