THE
C
PROGRAMMING

LANGUAGE

S HEE (12484) :

Library af Congress Cainfoging in Publicetion Data

KERNIGHAN, BRIAN W._
The programming language.

Inciudes index,

b, CCompuer program language) 1. RITCHIE,
DENMNIS M., joint author. L. Tile
QAT6.73.C15K47 .6 324 TT.I8983

ISBN 0-13-110163-3

Copyright © 1978 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
sysiem, or transmitted, in any form or by any means, electronic, mgchanical, photocopy-
ing. recording, o1 otherwise, without the prior written permission of the publisher. Print-
ed in the United States of America. Published simultaneously in Canada.

This book was set in Times Roman and Courier 12 by the auvthors, using a Graphic Sys-
1lems pholoiypesetier driven by a PDP-11/70 running under the UNIX operating system.

UUNIX is a Trademark of Bell Laboratories.

15 14

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALLA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD.. Toronto
PRENTICE-HALL OF INDMA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC_, Tokyo

PRENTICE-HALL OF SOUTHEAST ASiA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellinglon, New Zealand

Preface
Chapter 0

Chapter 1

e e
—_— D OO] 2N L G b

0
1

Chapter 2

2.1
2.2
2.3
24
o)
2.6
27
28
29
2.10
2.11
2.12

Introduction

A Tutorial Introduction

Getting Started

VYariables and Arithmetic
The For Statement
Symbolic Constants

A Collection of Useful Programs
Arrays

Functions

Arguments — Call by Value
Character Arrays

Scope; External Variables
Summary

Types, Operators and Expressions

Variable Names

Data Types and Sizes

Constants

Declarations

Arithmetic Operators

Relational and Logical Operators
Type Conversions

Increment and Decrement Operators
Bitwise Logical Operators
Assignment Operators and Expressions
Conditional Expressions

Precedence and Order of Evaluation

v

CONTENTS

ix

11
12
13
20
22
24

28
31

33

33
33
34
36
37
38
39
42
44
46
47
48

Vi THE C PROGRAMMING LANGUAGE

Chapter 3

Chapter 4

4.1
4.2
4.3
44
4.5
4.6
4.7
4.3
4.9
4.10
4.11

Chapter 5

5.1
5.2
53
5.4
Sh
5.6
5.7
5.8
59
510
5.11
5.12

Chapter 6

Control Flow

Statements and Blocks
If-Else

Else-If

Switch

Loops — While and For
Loops — Do-while
Break

Continue

Goto's and Labels

Functions and Program Structure

Basics

Functions Returning Non-Integers
More on Function Arguments
External Variables

Scope Rules

Static Variables

Register Yariables

Block Structure

Initialization

Recursion

The C Preprocessor

Pointers and Arrays

Pointers and Addresses

Pointers and Function Arguments
Pointers and Arrays

Address Arithmetic

Character Pointers and Functions
Pointers are not Integers
Multi-Dimensional Arrays

Pointer Arrays; Pointers to Pointers
Initialization of Pointer Arrays

Pointers vs. Multi-dimensional Arrays

Command-ling Arguments
Pointers to Functions

Structures

_ Basics
Structures and Functions

Arrays of Structures

51

51
51
53
54
56
39
61
62
62

65

65
68
71
72
76
80
81
81
82
34
86

89

89
91
93
96
99
102
103
105
109
110
110
114

119

119
121
123

6.4
6.5
6.6
6.7
6.8
6.9

Chapter 7

7.1
7.2
7.3
7.4
7.5
7.6
i
7.8
Tt

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Appendix A
1.

22 e RIS)

11.
12.
1435
14.
15,

CONTENTS

Pointers to Structures
Self-referential Structures
Table Lockup

Fields

Unions .

Typedef

Input and Output

Access to the Standard Library

Standard Input and Output — Getchar and Putchar
Formatted Output — Printf

Formatted Input — Scanf

In-memory Formal Conversion

File Access

Error Handling — Stderr and Exit

Line Input and Cutput

Some Miscellanecus Functions

The UNIX System Interface

Fite Descriptors

Low Level [/O — Read and Write

Open, Creat, Close, Unlink

Random Access — Seek and Lseek

Example — An Implementation of Fopen and Getc
Example — Listing Directories

Example — A Storage Allocator

C Reference Manual

Introduction

Lexical conventions
Syntax notation
What’s in a name?
Objects and Ivalues
Conversions
Expressions
Declarations
Statements

External definitions
Scope rules
Compiler control lines
Implicit declarations
Types revisited
Constant expressions

Vil

128
130
134
136
138
140

143

143
144
145
147
150
151
154
155
156

159

159
160
162
164
165
169
173

179

179
179
182
182
183
183
185
192
201
204
205
207
208
209
bl

vili THE C PROGRAMMING LANGUAGE

16. Portability considerations 211
17. Anachronisms 212¢
18. Syntax Summary 214

Index 221

PREFACE

C is a general-purpose programming language which features economy
of expression, modern control flow and data structures, and a rich set of
operators. C is not a “very high level” language, nor a *‘big”* one, and is
not specialized to any particular area of application. But its absence of res-
trictions and its generality make it more convenient and effective for many
tasks than supposedly more powerful languages.

C was originally designed for and implemented on the UNIXt operating
system on the DEC PDP-11, by Dennis Ritchie. The operating system, the
C compiler, and essentially all UNIX applications programs (including all of
the software used to prepare this book) are written in C. Production com-
pilers also exist for several other machines, including the IBM System/370,
the Honeywell 6000, and the Interdata 8/32. C is not tied to any_ particular
hardware or system, however, and it is easy to write programs that will run
without change on any machine that supports C.

This bock is meant to help the reader learn how to program in C. It
contains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of
the treatment is based on reading, writing and revising examples, rather
than on mere statements of rules. For (he most part, the examples are com-
plete, real programs, rather than isolated fragments. All examples have
been tested directly from the text, which is in machine-readable form.
Besides showing how to make effective use of the language, we have also
tried where possible to illustrate useful algorithms and principles of good
style and sound design.

The boock is not an introductory programming manual; it assumes some
familiarity with basic programming concepts like variables, assignment state-
ments, loops, and functions. Nonetheless, a novice programmer should be
able to read along and pick vup the language, although access to a more

1 UNIX is a Trademark of Bell Laboratories. The UNIX operating system is
available under license from Western Electric, Greensboro, N. C.

X

X THE C PROGRAMMING LANGUAGE

knowlédgeable colleague will help,

In our experience, C has proven to be a pleasant, expressive, and versa-
tile language for a wide variety of programs. It is easy to learn, and it wears
well as one’s experience with it grows. We hope that this book will help you
to use it well.

The thoughtful criticisms and suggestions of many friends and col-
leagues have added greatly to this book and to our pleasure in writing it. In
particular, Mike Bianchi, Jim Blu¢, Stu Feldman, Doug Mcllroy, Bill
Roome, Bob Rosin, and Larry Rosler all read multiple versions with care.
We are also indebted to Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley,
Debbie Haley, Marion Harris, Rick Holt, Steve Johnson, John Mashey, Bob
Mitze, Ralph Muha, Peter Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack,
Ken Thompson, and Peter Weinberger for helpful comments at various
stages, and to Mike Lesk and Joe Ossanna for invaluable assistance with
typesetting.

Brian W. Kernighan

Dennis M. Ritchie

CHAPTER 0: INTRODUCTION

C is a general-purpose programming language. Il has been closely asso-
_ciated with thg UNIX system, since it was developed on that system, and
since UNIX and its software are wrilten in C. The language, however, is not
tied 10 any one operating system or maching; and although it has been called
a ‘‘system programming language’’ because it is useful for writing operating
systems, it has been used equally well to write major numerical, (ext-
processing, and data-base programs.

C is a relatively ‘‘low level” language. This characterization is not
pejorative; it simply means that C deals with the same sort of objects_that
most computers do, namely characters, numbers “and addresses, These may
be combined and mowed about with the usual ar“—hmeﬁc—tmd‘logxcal opera-
tors implemented by actual machines.

C provides no operations to deal directly with composne objects such as
character strings, sets, lists, or arrays considered as a whole. There is no
analog, for example, of the PL/I operations which mampulate an entire
array or string, The language does not define any storage allocation facility
other -than static definition and the stack discipline provided by the local
variables of functions: there is no heap or garbage collection like that pro-
vided by Algol 68. Finally, C itself provides no input-cutput facilities: there

are no READ or WRITE statements, and no wired-in file access methods.
All of these higher-level mechanisms must be prowded by exphcnly called
functions.

Similarly, C offers only straightforward, single-thread control flow con-

structions: tests, loops, grouping, and subprograms, but not multiprogram-
ming, parallel “operations, synchronization, or coroul:nes

Although the absence of some of these features may seem like a grave
deficiency (**You mean I have to call a function to compare two character
strings?”), keeping the language down lo modest dimensions has brought
real benefits, Since C_is relatively small, it can he described in a small
space, and learned quickly. A_compiler for C can_be simple and compact.
Compilers are also easily written; using current technology, one can expect
to prepare a compiler for a new machine in a couple of months, and to find

1

"ROGRAMMING LANGUAGE CHAPTER 0

T mercent of the code of a new compiler is commeon with existing ones.
» provides a high degree of language mobility, Because the data types
and control structures provided by C are supported directly by most cxisting
computers, the run-time library required o implement scif-contained pro-
grams is tiny. On the PDP-11, for example, it contains only the routines to
do 32-bit multiplication _and division and 1o perform the subroutine entry
and exit sequences. Of course, each implementation provides a comprehen-
sive, compatible library of functions t¢ carry out 1/0O, string handling, and
storage allecation operations, but since they are called only explicitly, the:
can be avoided if required; they can also be writien portably in C itself.

Again because the language reflects the capabilities of current comput-
ers, C programs tend to be efficient enough that there is no compulsion e
write assembly language instead. The most obvious example of this is the
UNIX operating system itself, which i1s written almost entirely in C. Of
13000 lines of system code, only about 800 lines at the very lowest level arz
in assembler. In addition, essentially all of UNIX applications software =
written in C; the vast majority of UNIX users (including one of the authors
of this book) do not even know the PDP-11 assembly language.

Although C matches the capabilities of many computers, it is indepen-
dent of any particular machine architecture, and so with a little care it :=
gasy to write “‘portable™ programs, that is, programs which can be run
without change on a variety of hardware. It iIs now routine in our environ-
ment that software developed on UNIX is transported to the locz
Honeywell, IBM und Interdata systems. In fact, the C compilers and run-
time suppart on these four machines are much more compatible thun the
supposedly ANSI standard versions of Fortran. The UNIX operaling svstem
itself new runs on both the PDP-11 and the Interdata 8/32. Outside of pro-
grams which are necessarily somewhat machine-dependent like the compiler,
assembler, and debugger. the software written in C is identical on both
machines. Within the operating system itself, the 7000 lines of code outsids
of the assembly language suppoit and the 170 device handlers is abour 93
percent identical,

For programmers familiar with other languages, it may prove helpful -
mention a few historical, technical, and philosophical aspects of C, for con-
trast and comparison.

Many of the most imponant ideas of C stem from the considerably
older, but still quite vital, language BCPL. developed by Martin Richards.
The influence of BCPL on C proceeded indirecily through the language B,
which was written by Ken Thompson in 1970 for the first UNIX sysitem on
the PDP-7.

Although it shares several characteristic features with BCPL, C is in no
sense a dialect of it. BCPL and B are ‘‘typeless’ languages: the only data
type is the machine word, and access 1o other kinds of objecis is by special

CHAPTER 0 INTRODUCTION 3

operators or function calls. In C, the fundamental data objects are charac-.
ters, integers of several sizes, and floating point numbers. In addition, there
i€ a hierarchy of derived data types created with poiniers, arrays, structures,
_unions, and functions.

C provides the fundamental flow-control constructions required for
well-structured programs: statement grouping; decision making (if); loop-
ing with the termination test at the top {while, for), or at the bottom

(do); and selecting one of a set of possible cases (switeh). (All of these

were provided in BCPL as well, though with somewhat different syntax; that
language anticipated the vogue for ‘“‘structured programming’ by several
years.)

C provides pointers and the ability to do address arithmetic. The argu-
ments to functions are passed by copying the value of the argument, and it
is impossible for the called function to change the actual argument in the
caller. When it is desired 1o achieve “‘call by reference,’’ a pointer may be
passed explicitly, and the function may change the object to which the
pointer points. Array names are passed as the location of the array origin,
so array arguments are effectively call by reference.

Any function may be called recursively, and its local variables are typi-
cally “‘aulomatic,”” or created anew with each invocation. Function
definitions may not be nested but variables may be declared in a block-
structured fashion. The functions of a C program may be compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or completely global. Internal variables may be
automatic or static. Automatic variables may be placed in registers for
increased efficiency, but the register declaration is enly a hint to the com-
piler, and does not refer to specific machine registers.

C is not a strongly-typed language in the sense of Pascal or Algol 68. It
is relatively_permissive about data conversion, although it will not automati-
cally convert data types with the wild abanden of PL/I. Existing compilers
provide no run-time checking of array subscripts, argument types, etc.

For those situations where strong type checking is desirable, a separate
version of the compiler is used. This program is called [int, apparently
because it picks bits of fuff from one’s programs. fint does not generate
code, but instead applies a very strict check to as many aspects of a program
as can be verified at compile and load time. It detects type mismatches,

inconsistent argument usage, unused or apparently uninjtialized variables,

potential _portability difficulties, and t(he like. Programs which pass
unscathed through fint enjoy, with few exceptions, freedom from type errors
about as complete as do, for example, Algol 68 programs. We will mention
other lint capabilities as the occasion arises.

Finally, C, like any other language, has its blemishes. Some of the
operators have the wrong precedence; some parts of the syntax could be
betier; there are several versions of the language extant, differing in minor

<+ THE C PROGRAMMING LANGUAGE CHAPTER 0

ways. Nonetheless, C has proven to be an extremely effective and expres-
sive language for a wide variety of programming applications.

The rest of the book is organized as follows. Chapter 1 is a lutorial
introduction o the central part of C. The purpose is Lo get the reader
started as quickly as possible, since we belicve strongly that the only way (0
learn a ncw language is to write programs in it. The tutorial does assume a
working knowledge of the basic elements of programming: there is no expla-
nation of computers, of compilation, nor of the meaning of an expression
like n=n+1. Allthough we have tried where possible 1o show useful pro-
gramring techniques, the book is not intended to be a reference work on
data structures and algorithms; when forced to a choice, we have concen-
trated on the language.

Chaplers 2 through 6 discuss various aspects of C in more detail, and
rather morc formaily, than docs Chapter 1, although the emphasis is still on
examples of complete, useful programs, rather than isolated fragmenis.
Chapter 2 deals with the basic data types, operators and cxpressions.
Chapter 3 treats control flow: if-else, while, for, etc. Chapter 4 cov-
ers functions and program structure — external variables, scope rules, and
so on. Chapter 5 discusses pointers and address arithmetic. Chapter 6 con-
tains the details of structures and unions.

Chapter 7 describes the standard C 1/0 library, which provides a com-
mon interface to the operating system. This 1/0 library is supported on all
machines that support C, so programs which use it for input, output, and
other system functions can be moved from one system to another essentially
without change.

Chapter 8 describes the interface between C programs and the UNIX
operating system, concentrating on input/output, the file system, and porta-
bility. Although some of this chapter is UNIX-specific, programmers who
are not using 4 UNIX system should still find useful material here, including
some insight into how one version of the standard library 18 implemented,
and suggestions on achieving portable code.

Appendix A containg the C rcference manual. This is the “official’
statement of the syntax and scmantics of C, and (except for one’s own com-
piler) the final arbiter of any ambiguities and omissions from the carlier
chapters.

Since C is an evolving language that exists on a varicty of systems, some
of the material in this book may not correspond to the current state of
development for a particular system. We have tried to steer clzar of such
problems, and to warn of potential difficultiecs. When in doubt, however, we
have generally chosen to describe the PDP-11 UNIX situation, since that is
the cnvironment of the majority of C programmers. Appendix A also
describes implementation differences on the major C sysiems.

CHAPTER 1: A TUTORIAL INTRODUCTION

Let us begin with a quick introduction to C. Qur aim is to show the
essential elements of the language in real programs, but without getting
bogged down in details, formal rules, and exceptions. At this point, we are
not trying to be complete or even precise (save (hat the examples are meant
10 be correct). We want to get you as quickly as possible to the point where
¥ou can write useful programs, and to do that we have to concentrate on the
basics: variables and constants, arithmetic, control flow, functions, and the
rudiments of input and output. We are quite intentionally leaving out of
this chapter features of C which are of vital importance for writing bigger
programs. These include pointers, structures, most of C’s rich set of opera-
tors, several control flow statements, and myriad details.

This approach has its drawbacks, of course. Most notable is that the
complete story on any particular language feature is not found in a single
place, and the tutorial, by being brief, may also mislead. And because they
can not use the full power of C, the examples are not as concise and elegant
as they might be. We have tried to minimize these effects, but be warned.

Another drawback is that later chapters will necessarily repeat some of
this chapter. We hope that the repetition will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate
from the material in this chapter to their own programming needs.
Beginners should supplement it by writing small, similar programs of their
own. Both groups can use it as a framework on which to hang the more
detailed descriplions that begin in Chapter 2.

1.1 Getting Siarted

The only way to learn a new programming language is by writing pro-
grams in it. The first program to write is the same for all languages:

Print the words
hello,; world

This is the basic hurdle: to leap over it you have to be able to create the

5

6 THE C PROGRAMMING LANGUAGE CHAPTER 1

program text somewhere, compile it successfully, load it, run it, and find out
where your output went. With these mechanical details mastered, every-
thing else 15 comparatively easy.

In C, the program to print **hello, world™ is

main{)

{

printf("hellc, worldin");
} .

Just how to run this program depends on the system you are using. As
a specific example, on the UNIX operating sysltem you must create the

source program in a file whose name ends in ‘‘.¢”’, such as Aeflo.c, then
compile it with the command

cc heflo.c

if you havenﬁ‘ botched anylhing, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable
file called a.ouz. Running that by the command

a.out
will produce
hella, world

as its output. On other systems, the rules will be different; check with a
local expert.

Exercise 1-1. Run this program on your system. Experiment with leaving
out parts of the program, to see what error messages you get. O

Now for some explanations about the program itseif. A C program,
whatever its size, consists of one or more ““‘functions” which specify the
actual computing operations that are to be done. C functions are similar to
the functions and subroutines of a Fortran program or the procedures of
PL/I, Pascal, etc. In our example, main is such a funclion. Normally you
are at liberty to give functions whatever names you like, but main is a spe-
cial name — your program begins executing at the beginning of main. This
means that every program must have a main somewhere. main will usually
invoke other functions to perform its job, some coming from the same pro-
gram, and others from libraries of previously written functions.

Cne method of communicating data between functions is by arguments.
The parentheses following the function name surround the argument list;
here main is a function of no arguments, indicated by (). The braces {}
enclose the statements that make up the function, they are analogous to the
DO-END of PL/I, or the begin-end of Algol, Pascal, and so on. A func-
tion is invoked by naming it, followed by a parenthesized list of arguments.

CHAPTER | A TUTORIAL INTRODUCTION 7

r

There is no CALL statement as there is in Fortran or PL/I. The parentheses
must be present even if there are no arguments.
The line that says

printf("hello, werldinM);

is a function call, which calls a function named printf, with the argument
"hello, world\n". printf is a library function which prints output on
the terminal (unless some other destination is specified). In this case it
prints the siring of characters that make up its argument.

A sequence of any number of characters enclosed in the double quotes
... is called a character string or string constant. For the moment our
only use of character strings will be as arguments for printf and other
functions.

The sequence \n in the string is C notation for the newline character,
which when printed advances the terminal to the left margin on the next
line. If you leave out the \n (a worthwhile experiment}, you will find that
your output is not terminated by a line feed. The only way to get a newline
character into the printf argument is with \n; if you try something like

printfi{"helle, world

y;

the C compiler will print unfriendly diagnostics about missing quotes.

printf never supplies a newline automatically, so multiple calls may
be used to build up an output line in stages. Our first program could just as
well have been written

maint)

{
printf ("hello, ")
printf ("world");
printf ("\n"};

)

to produce an identical output,

Notice that \n represents only a single character. An escape sequence
like \n provides a general and extensible mechanism for representing hard-
to-get or invisible characters. Among the others that C provides are \t for
tab, \b for backspace, \" for the double quote, and \\ for the backslash
itself.

Exercise 1-2. Experiment to find out what happens when printf’s argu-
ment string contains \x, where x is some character not listed above. O

& THE C PROGRAMMING LANGUAGE CHAPTER |

1.2 Variables and Arithmetic

The next program prints the foliowing table of Fahreaheit temperatures
and their centigrade or Celsius equivalents, using the formula

OIS et A

0 -17.8
20 -6.7
40 4.4
60 15.6

260 126.7
280 137.8
300 148.9

Here is the program itself.

/* print Fahrenheit—Celsgius table
for £ =0, 20, ..., 300 %/

main ()

{
int lower, upper, step;
float fahr, celsius;

lower = 0; /%* lower limit of temperature tabhle */
upper = 300; /% upper limit +/
step = 20; /* step size =/

fahr = lower;

while (fahr <= upper} {
celsius = (5.0/9.0) » (fahr-32.0);
printf ("%4.0f %6.1£f\n", fahr, celsius};
fahr = fahr + step;

H
The first two lines

/% print Fahrenheit-Celsius table
for £ = 0, 20, ..., 300 =%/

are a comment, wWhich in this case explains briefly what the program does.
Any characters between /#* and %/ are ignored by the compiler; they may
be used freely to make a program easier to understand. Comments may
appear anywhere a blank or newline can.

In C, aff variables must be declared before use, usually at the beginning
of the function before any executable statements. If' you forget a declara-
tion, you will get a diagnostic from the compiler. A declaration consisis of a
nipe and a list of variables which have that type, as in

CHAPTER 1 A TUTORJAL INTRODUCTION 9

int lower, upper, step;
float fahr, celsius;

The type int implies that the variables listed ate infegers; £loat stands for
Aoating peim, i.e., numbers which may have a fractional part. The precision
of both int and float depends on the particular machine YOu are using.
On the PDP-11, for instance, an int is a 16-bit signed number, that is, one
which lies betwcen —32768 and +32767. A float number is a 32-bit
quantity, which amounts to about seven significant digits, with magnitude
between about 107 and 10*38, Chapter 2 lists sizes for other machines.
C provides several other basic data types besides int and float:

char character — a single byte
short short integer
long long integer

double double-precision floating point

The sizes of these objects are also machine-dependent; details are in Chapter
2. There are also arrays, structures and unions of these basic types, pointers
1o them, and functiens that return them. all of which we will meet in due
course.

Actual computation in the temperature conversion program begins with
the assignments '

lower = 0;
upper = 300;
step = 20;
fahr = lower;

which iset the variables to their'starting values. Individual statements are
terminated by semicolons.

Each line of the table is computed the same way, 50 we use a loop which
repeats once per ling; this is the purpose of the while statement

while {(fahr <= upper} |

}

The cendition in parentheses is tested. If it is true (fahr is less than or
equal to upper), the body of the loop {all of the statements enclosed by
the braces { and }} is executed. Then the condition is re-tested. and if
true, the body is executed again. When the test becomes false (£ahr
exceeds upper) the loop ends, and execution continues at the statement
that follows the loop. There are no further statements in this program. so it
terminates.

The body of a while can be one or more statements enclosed in
braces, as in the temperature converler, or a single statement without
braces, as in

10 THE C PROGRAMMING LANGUAGE CHAPTER 1

while (i < j)
i=2 % i

In either case, the statements controlled by the while are indented by one
tab stop so you can see at a glance whal statements are inside the loop. The
indentation emphasizes the logical structure of the program. Although C is
quite permissive about statement positioning, proper indentation and use of
white space are critical in making programs easy for people to read. We
recommend writing only one statement per line, and (usually) leaving
blanks around operators. The position of braces is less important; we have
chosen one of several popular styles. Pick a style that suits you, then use il
consistently.

Most of the work gets done in the body of the loop. The Celsius tem-
perature is computed and assigned to celsius by the statement

celsius = (5.0/9.0) % (fahr-32.0};

The reason for using 5.0/9.0 instead of the simpler looking 5/9 is that in C,
as in many other languages, integer division fruncates, so any fractional part
is discarded. Thus 5/9 is zero and of course so would be all the tempera-
tures. A decimal peint in a constant indicates that it is floating poini, so
5.0/9.0 is 0.555..., which is what we want.

We also wrote 32.0 instead of 32, even though since fahr is a float,
32 would be automatically converted to float (to 32.0) before the subtrac-
tion. As a matter of style, it's wise to write floating point constants with
expiicit decimal points even when they have integral values; it emphasizes
their floating point nature for human readers, and ensures that the compiler
will see things your way too.

The detailed rules for when integers are converted to floating point are
in Chapter 2. For now, notice that the assignment

fahr = lower;
and the test
while (fahr <= upper)

both work as expected — the int is converted to float before the opera-
tion is done.

This example also shows a bit more of how printf works. printf is
actually a general-purpose format conversion function, which we will
describe completely in Chapter 7. [ts first argument is a string of characters
to be printed, with each % sign indicating where one of the other (second,
third, ...) arguments is to be substituted, and what form it is to be printed
in, For instance, in the statement :

CHAPTER 1 A TUTORIAL INTRODUCTION 11

printf("%4.0f %6.1£\n", fahr, celsius);

the conversion specification %4 . 0£ says that a floating point numpber is to be
printed in a space at least four characters wide, with no digits after the
decimal point. %6.1f describes another number to occupy at least six
spaces, with 1 digit after the decimal point, analogous to the Fé&.1 of For-
tran or the F(6,1) of PL/l. Parts of a specification may be omitted: %6€
says that the number is to be at least six characters wide; %. 2f requests two
places after the decimal point, but the width is not constrained; and %f
merely says to print the number as floating point. printf also recognizes
%d for decimal integer, %o for octal, %x for hexadecimal, %c for character,
% g for charactet string, and %% for % itself.

Each % construction in the first argument of printf is paired with its
corresponding second, third, etc., argument; they must line up properly by
number and type, or vou'll get meaningless answers.

By the way, printf is not part of the C language; there is no input or
curput defined in C itself. There is nothing magic about printf; it is just a
useful function which is part of the standard library of routines that are nor-
mally accessible to C programs. In order to concentrate on C iself, we
won't talk much about [/0 until Chapter 7. In particular, we will defer for-
matted input until then. If you have to input numbers, read the discussion
of the function scanf in Chapter 7, section 7.4. scanf is much like
printf, except that it reads input instead of writing output.

Exercise 1-3. Modify the temperature conversion program to print a head-
ing above the table. O

Exercise 1-4. Write a program to print the corresponding Celsius to
Fahrenheit table. N

1.3 The For Statement

As you might expect, there are plenty of different ways to write a pro-
gram;, let’s try a variation on the temperature converter.

main() /* Fahrenheit-Celsius tabkle */
{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf ("%4d %6.1f\n", fahr, (5.0/9.0)«(fahr-32));
1

This produces the same answers, but it certainly looks different. One major
change is the elimination of most of the variables; only fahr remains, as an
int {to show the %d conversion in printf). The lower and upper limits
and the step size appear only as constants in the fox statement, itself a new

12 THE C PROGRAMMING LANGUAGE CHAIFER 1

conslruciion, and the expression that computes the Celsius temperature now
appears as the third argument of printf instead of in a separate assign-
ment statement.

This last change is an instance of a quite genera! rule in € — in any
context where it is permissible to use the value of a vanable of some type,
you can use an expression of that type. Since the third argument of
printf has to be a floating point value to match Lhe %6.1£, any floating
point expression can occur there.

The for itself is a loop, a generalization of the while. If you compare
it to the earlier while, its operation should be clear. It contains threc
parts, separated by semicolons. The first part

fahr = 0

is done once, before the loop proper is entered. The second part is the test
or condition that controls the loop:

fahr <= 300

This condition is evaluated; if it is true, the body of the loop (here a single
printf) is executed. Then the re-initialization step

fahr = fahr + 20

is done, and the condition re-evaluated. The loop terminates when the con-
dition becomes false. As with the while, the body of the loop can be a
single statement, or a group of statements enclosed in braces. The initializa-
tion and re-initialization parts can be any single expression.

The choice between while and for is arbitrary, based on what secems
clearer. The for is usually appropriate for loops in which the initialization
and re-initialization are single statements and logically related, since it is
more compact than while and Keeps the loop control statements together
in one place.

Exercise 1-5. Modify the temperature conversion program to print the table
in reverse order, that is, from 300 degrees to 0. O

1.4 Symbolic Constants

A final cobservation before we leave temperature conversion forever.
It's bad practice to bury “‘magic numbers” like 300 and 20 in a program;
they convey little information to someone who might have to read the pro-
gram later, and they are bard to change in a systematic way. Fortunately, C
provides a way to avoid such magic numbers. With the #define construc-
tion, at the beginning of a program you can define a symbolc name or sym-
bolic consiant 1o be a particular string of characters. Thereafier, the compiler
will replace all unquoted occurrences of the name by the corresponding

CHAPTER 1 A TUTORIAL INTRODUCTION 13

string. The replacement for the name can actually be any text at all; it is
not limited to numbers,

- #define LOWER O /% lower limit of table #/°
" #define UPPER 300 /% upper limit %/
v #define STEP 20 - /* step size x/
Smain () /* Fahrenheit-Celsius table w%/
{ i
int fahr;

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEF}
printf ("xdd %6.1f\9”, fahr, (5.0/9.0)%(fahr-32));
I

The guantities LOWER, UPPER and STEP are constants, so they do not
appear in declarations. Symbolic names are commonly written in upper case
so they can be readily distinguished from lower case variable names. Notice
that therc is no semicolon at the end of a definition. Since the whole line
after the defined name is substituted, there would be too many semicolons
in the for.

1.5 A Collection of Useful Programs

We are now going to consider a family of related programs for doing
simple operations on character data. You will find that many programs are
Just expanded versions of the prototypes that we discuss here.

Character Input and Qutput

The standard library provides functions for reading-and writing a charac-
ter at a lime. getchar () felu_:hes the' next input character each time it is
called, and returns that character as its value. That is, after

€ = getchar ()

the véi'iab]'é‘i c contains the next character of input. The characiers normally
come from the terminal, but that need not concern us until Chapter 7,
The function putchar (¢) is the complement of getchar:

putchar {(c)

prints the contents of variabie ¢ on some output medium, again usually the
terminal. Calls to putchar and printf may be interleaved; the output
will appear in the order in which the calis are made.

As with printf, therc is nothing special about getchar and
putchar. They are not part of the C language, but they are universally
available.

14 THE C PROGRAMMING LANGUAGE CHAPIER 1

File Copying

Given getchar and putchar, you c¢an write a surprising amount of
usefut code without knowing anything more about [/O. The simplest exam-
ple is a program which copies ils input to its output one character at a time.
In outline,

get a character

while (character is not end of file signal)
ouiput the character just read
ger a new character

Converting this into C gives

main{) /* copy input to output; 1st version ==/

{

int ic;

c = getchar{);
while (¢ '= EQF) |
putcharic);
¢ = getchar!l);

}

The relational operator !'= means “‘not equal to.”

The main problem is detecting the end of the inpul. By convention,
getchar returns a value which is not a valid character when il encounters
the end of the inpul; in this way, programs can detect when they run out of
input. The only complication, a serious nuisance, is that there are rwo con-
ventions in common use about what that end of file value really is. We
have deferred the issue by using the symbolic name EOF for the value,
whatever it might be. In practice, EOF will be either -1 or 0, so the pro-
gram must be preceded by the appropriate one of

fdefine EQF -1
or
#define EQF 0

in order to work properly. By using the symbolic constant EOF 1o represent
the value that getchar returns when end of file occurs, we are assured that
only one thing in the program depends on the specific numeric value,

We also declare ¢ to be an int, not 4 char, so it can hold the value
which getchar returns. As we shall see in Chapter 2, this value i§ actually
an int. since it must be capable of representing EOF in addition to all pos-
sible char’s.

CHAPTER 1 A TUTORIAL INTRODUCTION 15

The program for copying would actually be written more concisely by
experienced C programmers. .In C, any assignment, such as

c = getcharl()

can be used in an expression; its value is simply the value being assigned to
the left hand side. If the assignment of a character te ¢ is put inside the
test part of a while, the file copy program can be written

main(} f* copy input to output; 2nd version x/
{ !
int ¢} ‘\,\ o/
;b cﬁ :
while ({c'= getchar()) != EOF)

putchar {c};
)

The program gets a character, assigns it to ¢, and then tests whether the
character was the end of file signal. If it was not, the body of the while is
executed, printing the character. The while then repeats. When the end
of the input is finally reached, the while terminates and so does main.

This version centralizes the input — there is now only one call to
getchar — and shrinks the program. Nesting an assignment in a test is
one of the places where C permits a valuable conciseness. (It’s possible to
get carried away and create impenetrable code, though, a Iendency that we
will try o curb.)}

It’s important to recognize that the parentheses around the assignment
within the conditional are really necessary. The precedence of = is higher
than that of =, which means that in the absence of parentheses the relational
test != would be done before the assignment =, So the statement

¢ = getchar{) != EQF
is equivalent to B
¢ = {(getchar() != EOF)

£y

‘This has the undesired effect of setting ¢ to 0 or 1, depending on whether
or not the call of getchar encountered end of file. (More on this in
Chapter 2.}

Character Counting

The next program counis characters; it s a small elaboration of the copy
program.

16 THE C PROGRAMMING LANGUAGE CHAPTER 1

main{} /* count characters in input »*/
{
long nc;
ne = 0;
while (getchar{) != EQF)
++nc;

printf ("%1d4\n", nc);
)

The statement
++nc;

shows a new operator, ++, which means ncrement by one. You could write
nc = nc + 1 but ++nc is more concise and often more efficient. There
is a corresponding operator == to decrement by 1. The operators ++ and ——
can be either prefix operators (++ne) or postfix (nc++); these two forms
have different values in expressions, as will be shown in Chapter 2, but
++nc and ne++ both increment ne. For the moment we will stick to
prefix.

The character counting program accumulates its coupt-in a long vari-
able instead of an int. On a PDP-11 the maximum value of an int is
32767, and it would take relatively little input to overflow the counter if it
were declared int; in Honeywell and 1BM C, long and int are
synonymous and much larger. The conversion specification %14 signals to
printf that the corresponding argument is a long integer.

To cope with even bigger numbers, you can use a double (double
length float). We will also use a2 for statement instead of a while, to
illustrate an alternative way to write the loop.

main{) /* count characters in input =/
(

double nc;

for (nec = 0; getchar() != EOF; ++nc)

Ji r
printf ("%.0f\n", nc);
]

printf uses %f for both flocat and double; %.0f suppresses print-

ing of the non-existent fraction part,

The body of the for loop here is empty, because all of the work is done
tkin the test and re-initialization__parts‘ But the grammatical rules of C require
‘that a for statement have a body. The isolated semicolon, technically a sl

statement, s there to satisfy that requirement. We put it on a separate line
to make it more visible.

CHAPTER 1 A TUTORIAL INTRODUCTION 17

Before we leave the character counting program. observe that if the
input contains no characters, the while or for test fails on the very first
call to getchar, and so the program produces zero, the right answer. This
i$ an important observation. One of the nice things about while and for
is that they test at the top of the loop, before proceeding with the body. If
there is nothing to do, nothing is done, even if that means never going
through the loop body. Programs should act intelligently when handed input
like **no characters.”” The while and for statements help ensure that they
do reasonable things with boundary conditions.

Line Counting

The next program counts fines in its input. Input lines are assumed to
be terminated by the newline character \n that has been religiously
appended to every line written out.

main () /* count lines in input */
{
int ¢, nl;

nl = 0;
while ({c = getchar(}) != EOF)
if (e == \n¢}
++nl;
printf {"xd\n", nlj};
}

The body of the while now consists of an if, which in turn controls
the increment ++nl. The if statement tests the parenthesized candition,
and if it is true, does the statement (or group of statements in braces) that
follows. We have again indented to show what is controlled by what.

The double equals sign == is the C notation for “‘is equal to’* (like
Fortran’s .EQ.). This symbol is used to distinguish the equality test from
the single = used for assignment. Since assignment is about twice as fre-
quent as equality testing in typical C programs, it’s appropriate that the
operator be half as long.

— Any single character can be written between single quotes, to produce a
value equal to the numerical value of the character in the machine’s charac-
ter set; this is called a character constant. So, for example, A’ is a charac-
ter constant; in the ASCII character set its value is 65, the internal represen-
tation of the character A, Of course 'A‘ is to be preferred over 65: its
miganing is obvious. and it is independent of a particular character set.

The escape sequences used in character strings are aiso legal in character
constants, so in tests and arithmetic expressions, ' \n’ stands for ithe value
of the newline character. You should note carefully that *\n’ is a single
character, and in expressions is equivalent to a single integer; on the other

18 THE C PROGRAMMING LANGUAGE CHAPTER 1

hand, "\n" is a character string which happens to contain only ene charac-
ter. The topic of strings versus characters is discussed further in Chapter 2.

Exercise 1-6. Write a program to count blanks, tabs, and newlines. O

Exercise 1-7. Wrile a program to copy its input to its output, replacing each
string of one or more blanks by a single blank. O

Exercise 1-8. Write a program to replace each tab by the three-character
sequence », backspace, —, which prints as », and each backspace by the
similar sequence <. This makes tabs and backspaces visible. O

Word Counting

The fourth in our series of useful programs counts lines, words, and
characters, with the loose definition that a word is any sequence of charac-
ters that does not contain a blank, tab or newline. (This is a bare-bones
version of the UNIX utility wc.}

#define YES 1
#define NO

main() /% count lines, words, chars in input */
{

int ¢, nl, nw, nec, inword;

inword = NO;
nl =nw =nc = 0;

while {{c = getchar{)] != EQF) |{

++nc;

if (¢ == '\n’}
++nl;

if fc==" 7 |l c == '\n’ || € == "\t')
inword = NO;

else if (inword == NO) {
inword = ¥YES;
++nw;

]
)
printf ("xd %d %d\n", nl, nw, nc);
}

Every time the program encounters the first character of a word, it
counts it. The variable inword records whether the program is currently in
a word or not; initially it is *‘not in a word,”” which is assigned the value No.
We prefer the symbolic constants YES and NO to the literal values 1 and 0
because they make the program more readable. Of course in a program as
tiny as this, it makes little difference, but in larger programs, the increase in

CHAPTER ! A TUTORIAL INTRODUCTION 19

clarity is well worth the modest extra effort to write it this way originally.
You'll also find that it’s easier to make extensive changes in programs where
numbers appear only as symbolic constants. ’

The line

nl = nw = nc = 0,

sets all three variables to zero. This is not a special case, but a consequence
of the fact that an assignment has a value and assignments associale right to
left. It's really as if we had written

ne = {nl = (nw = Q));

The operator | | means OR, so the line

-

if (e=="' ' |l g=="\n" |l ¢ == "NE)

says “‘if c is a blank or ¢ is a newline or ¢ is a tab ... (The escape
sequence \t is a visible representation of the tab character.) There is a
corresponding operator && for AND. Expressions connected by s& or ||
are evaluated left to right, and it is guaranteed that evaluation will stop as
soon as the truth or falsehood is known. Thus if ¢ contains a blank, there is
no need to test whether it contains a newline or tab, so these tests are ror
made. This isn’t particularly important here, but is very significant in more
complicated siluations, as we will soon see,

The example also shows the C else statement, which specifies an alter-
native action to be done if the condition part of an if statement is false.
The general form is .

if (expression)
statement-1
else
statement-2

One and only one of the two statements associated with an if—-else is
done. If the expression is true, statement-1 is executed; if not, statement-2 is
executed, Each staremeni can in fact be quite complicated. In the word
count program, the one after the else is an if that controls two state-
menis in braces.

Exercise 1-9. How would you test the word count program? What are
some boundaries? & '

Exercise 1-10. Write 2 program which prints the words in its input, one per
line. m

Exercise 1-11. Revise the word count program to use a better definition of
“word,” for example, a sequence of letters, digits and apostrophes that
begins with a letter. O

20 THE C PROGRAMMING LANGUAGE CHAPTER 1

1.6 Arrays

Let us write a program to count the number of occurrences of each
digit, of white space characters {blank, tab, newline), and all other charac-
ters. This is artificial, of course, but il permits us to illustrate several
aspects of C in one program.

There are twelve categories of input, so it is convenient to use an array
to hold the number of occurrences of each digit, rather than ten individual
variables. Here is one version of the program:

main(} /% count digits, white space, others x/
{

int ¢, i, nwhite, nother;

int ndigit[10]1;

nwhite = nother = 0;
for {i = 0; i < 10; ++i)
ndigit[i] = 0;

while [{e¢ = getchar{)) != EQF}
if (¢ »>= '0’ && c <= '9')
" ++ndigit[c—"0°1;
else if (e == ' ' |l ¢ == '\m’ |l ¢ == '\t')
++nwhite;
else
++nother;

printf ("digits =");
for {1 = 0; i < 10; ++i}
printf{" %d", ndigit[il); .
printf ("\nwhite space = %d, other = %d\n",
nwhite, nother);
H

The declaration
int ndigit[10];

declares ndigit to be an array of 10 integers. Array subscripis always start
at zero in C (rather than 1 as in Fortran or PL/1), so the elements are
ndigit[0], ndigit(1], ..., ndigit[9]. This is reflected in the for
loops which initialize and print the array.

A subscript can be any integer expression, which of course includes
integer variables like i, and integer constanis.

This particular program relies heavily on the properties of the character
representation of the digits. For example, the test

if (¢ »>= 0’ && ¢ <= '9')

CHAPTER 1 A TUTORIAL INTRODUCTION 21

determines whether the character in ¢ is a dlgll’. If it is, the numeric value
of that digit is '

c - ‘0!

This works only if 0, *17, etc., are positive and in increasing order, and
if there is nothing but digits between 0/ and /9. Fortunately, this is true
for all conventional character sets.

By definition, arithmetic involving char’s and int’s converts every-
thing to int before proceeding, so char variables and constants are essen-
tially identical to int’s in arithmetic contexts. This is quite natural and
convenient; for example, ¢ - 0’ is an integer expression with a value
between 0 and 9 corresponding to the character ' 0 1o '8’ stored in ¢, and
1s thus a valid subscript for the array ndigit.

The decision as to whether a character is a digit, a white space, or some-
thing else is made with the sequence

if {c »>= '0" && ¢ <= '9')
++ndigit[e-'0"];

else if (¢ == "' 7 || ¢ == "\n’ (| c == '\t')}
++nwhite;

else
++nother;

The patiern

if icondition)
statemernt

else if (condition)
statement

else
statement

occurs frequently in programs as a way to express a multi-way decision. The
code is simply read from the top until some condition is satisfied; at that
point the corresponding staremens part is executed, and the entire construc-
tion is finished. (Of course statement can be several statements enclosed in
braces.) If none of the conditions is satisfied, the statement after the final
else is executed if it is present. If the final else and statement are omil-
ted {as in the word count program), no action takes place. There can be an
arbitrary number of

else if (conditon)
séatement

groups between the initial 1£ and the final else. As a matter of style, it is
advisable to format this construction as we have shown, so that long deci-
sions do not march off the right side of the page.

22 THE C PROGRAMMING LANGUAGE CHAPTER 1

The switch statement, to be discussed in Chapter 3, provides another
way 10 write a multi-way branch that is particularly suitable when the condi-
tion being tested is simply whelher some mteger ot_character gpr@ssmn'
matches one of a set of constaits. For conirast, we will present a switch
version of this program in Chapter 3.

Exercise 1-12. Write a program to print a histogram of the lengths of words
“.in its input. It is easiest to draw the histogram horizontally; a vertical orien-
tation is more challenging. O

1.7 Functions

In C, a fimcrion is equivalent to a subroutine or function in Fortran, or a
procedure in PL/I, Pascal, etc. A function provides a convenient way io
encapsulate some computation in a black box, which can then be used
without worrying about its innards. Functions are really the only way to
cope with the potential complexity of large programs. With properly
designed functions, it is possible to ignore how a job is done; knowing what
is done is sufficient. C is designed to make the use of functions casy, con-
venient and efficient; you will often see a function only a few lines long
called only once, jusi because it clarifies some piece of code.

So far we have used only functions like printf, getchar and
putchar that have been provided for us; now it’s time to write a few of
our own. Since C has no exponentiation operator like the =+ ol Fortran or
PL/I, let us illustrate the mechanics of function definition by writing a func-
tion power (m, n) to raise an integer m to a positive integer power n.
That is, the value of power (2, 5} is 32. This function certainly doesn’t
do the whole job of +* since it handles only positive powers of small
integers, but it's best to confuse only one issue at a time,

Here is the function power and 4 main program to exercise it, so you
can see the whole structure at once.

main() /% test power function */
(
int i;

for (i = 0; 1 < 10; ++i)
printf ("%d %d %d\n", i, power{2,i), power(-3,i)};

CHAPTER 1 A TUTORIAL INTRODUCTION 23

w3

power (x, n)} /% raise x to n-th power; n > 0 =/
LN U R TP IS i =
{ 1l
int i, p; !
p=1;
for (i = 1; i <= n; ++1i)
P=p * X

returnip);
)

Each function has the same form:

narme {argument list, if any)
argument declarations, if any
{
declarations
statemments
}

The functions can appear in either order, and in one source file or in two.
Of course if the source appears in two files, you will have to say more to
compile and load it than if it all appears in one, but that is an operating sys-
tem matier, not a language attribute. For the moment, we will assume that
both functions are in the same file, so whatever you have learned about run-
ning C programs will not change.

The function power is called twice in the line

printf("%d %d %d\n", i, power{2,i}), power{-3,i));

Each call passes two arguments to power, which each time returns an
integer to be formatted and printed. In an expression, power {2, 1) is'an
integer just as 2 and i are. (Not all functions produce an integer value; we
will take this up in Chapter 4.)

In power the arguments have to be declared appropriately so their types
are known. This is done by the line

int x, n;

that follows the function name. The argument declarations go between the
argument list and the opening left brace; each declaration is terminated by a
semicolon. The names used by power for its arguments are purely Jocal to

power, and not ac ‘accessible (0 any other functlon other routines can use the
same names ‘without conflict. This is also true of the variables i and p: the
i in power is unrelated to the i in main.

The value that power computes is returned to main by the return
statement, which is just as in PL/I. Any expression may occur within the
parentheses. A function need not rewurn a value; a return statement with

no expression causes control, but no useful value, to be returned (o the

24 THE C PROGRAMMING LANGUAGE CHAPTER 1

caller, as does ““falling off the end” of a function by reaching the terminat-
ing right brace.

Exercise 1-13. Write a program (o convert its inpul to lower case, using a
function lower (c) which returns c if c is not 4 letter, and the lower case
value of cif it is a letter. O

1.8 Arguments — Call by Value

One aspect of C functions may be unfamiliar to programmers who are
used to other languages, particularly Fortran and PI,{I. In C, all function
arguments are passed ‘‘by value.”” This means that the called functlon is
given the values of its arguments in temporary variables (actually on a
stack) rather than their addresses: This leads to some different propertles '
than are seen with “*catl by refererice™ languages like Fortran and PL/I,
which the called routine is handed the address of the argument, not |ts
value.

The main distinction is that in C the called function cannot alter a vari-

able in the calling function; it can “only alter its private, temporary copy.
 "Call by value is an asset, however, not a liability. It usually leads to
more compact programs with fewer extraneous variables, because arguments
can be treated as conveniently initialized local variables in the called routine.
For example, here is a version of powexr which makes use of this fact.

power {x, n} /% raise x to n-th power; n>0; version 2 */
int x, n;
{

int p;

for {(p=1; n>» 0; --n}
P=Pp*x;
return (p);

}

The argumem[n\;s used as a temporary variable, and is counted down until
it becomes zero there is no longer a need for the variable i. Whatever |s
ginally called with.
"~ When necessary, it is possible to arrange for a function to modify a vari-
able in a calling routine. . The caller must provide the address of the variable
to be set (technically a pointer to the variable), and the called function must
declare the argument to be a pointer and reference the actual variable
indirectly through it. We will cover this in detail in Chapler 5

When the name of an array is used as an argument, the value passed to

the function is actually the location or address of the beginning of ihe array.
(There is no copying of array elements.) By subscnptmg this value, the

CIIAPTER 1 A TUTORIAL INTRODUCTION 47

function can access and alter any element of the array. This is the topic of
the pext section.

1.9 Character Arrays

Probably the most common type of array in C is the array of characters.
To illustrate the use of character arrays, and functions 1o manipulate them,
let’s write a program which reads a set of lines and prints_the longest, The
basic outline is simple enough,

while (there’s anorher fine)
if (it's fonger than the previous fongesr)
save it and its fength
print longest fine

This outline makes it clear that the program divides naturally into picces.
One piece gets a new line, another tests it, another saves it, and the rest
controls the process.

Since things divide so nicely, it would be well to write them that way
too. Accordingly, let us first write a separate function getline 1o fetch the
next fine of inpul: this is a generalization of getchar. To make the func-—
tion uscful in other contexts, we'll iry to make il as flexible as possible. At
the minimum, getline has 1o return a signal about possible end of file; a_
more generally useful des1gn would be to return the length of the line, or
zero if end of file is encountered. Zeto is never a valid line length since
every fine has at ledst ong character: even a line contdmmg only a newline
has length 1,

When we find a line that is longer than the previous longest, it must be
saved somewhere. This suggesis a second function, copy, to copy the new
linc to a safe place.

Finally, we need a main program to control getline and copy. Here
is the result.

26 THE C PROGRAMMING LANGUAGE CHAPTER |

#define MAXLINE 1000 /+ maximum input line size =/

main(} /% find longest line */

{

int len; /% current line length =»/

int max; /% maxinum length seen sc far */
char line[MAXLINE]; /% current input line #*/
chary save (MAXLINE]; /x longest line, saved %/

max = 0;
while ({len = getline(line, MAXLINE)) > 0}
if {len > max) |{
max = len;
copy(line, save);
)
if {max > 0) /* there was a line »/
printf ("%g", save);

?g!ﬁu&z

getline(s, 1lim) /% get line into s, return length +«/
char s[];

int lim;

{

st 10E ol ol o

for (i=0; i<lim-1 && (c=getchar())!=EOF && cl='\n’; ++i

s[i] = ¢; E
if (¢ == *\n’) |
slil = ¢;
5 i
} 2
s[i]l = '\0’;

return{i};

copy(sl, s2} /% copy s1 to s2; assume s2 big enough */
char s1[], s2(];

alaglie | ol

A=

while ((s2[i] = s1[i]) !'= ’\0’)
++i;

main and getline communicate both through a pair of arguments and
a returned value. In getline, the arguments are declared by the lines

i)

CHAPTER | A TUTORIAL INTRODUCTION 27

char s[]; «

int 1lim;
which specify that the first argument is an array, and the second is an
integer. The length of the array s is not specified in getline since it is
determined in main. getline uses return to send a value back to the
caller, just as the function power did. Some functions return a useful
value; others like copy, are only used for lheir effect and return no vd]ue
al the end of the array it is creating, 8. to mark the end of the string of charac-
ters. This convention is also used by the C compiler: when a string constant
like

"hello\n'"

is written in a C program, the compiler creates an array of characters con-
taining the characters of the string, and terminates it with a \0 so that func-
tions such as printf can detect the end:

lh[e]J1 1[0 \w]ro]

The %s fermat specification in printf ¢xpects a string represented in this
form. If you examine copy, you will discover that it too relies on the fact
that its input argument s1_is terminated by \0, and it copies this character
onto the output argument s2. (All of this implies that \0 is not a part of
normal text.)

It is worth mentioning in passing that even a program as small as this
ong presents some sticky design problems. For example, what should main
do if it encounters a line which is bigger than its limit? getline works
properly, in that it stops collecting when the array is full, even if no newline
has been seen. By testing the length and the last character returned, main
can determine whether the line was too long, and then cope as it wishes. In
the interests of brevity, we have ignored the issue.

There is no way for a user of getline to know in advance how long an
input line mighi be, so getline checks for overflow. On the other hand,
the user of copy already knows {or can find out) how big the strings are, so
we have chosen not to add error checking to it.

Exercise 1-14. Revise the main routine of the longest-line program so it
will correctly print the length of arbitrarily long input lines, and as much as
possible of the text. O

Exercise 1-15. Write a program to print all lines that are longer than 80
characters, LC

Exercise 1-16. Write a program to remove trailing blanks and tabs from
each line of input, and to delete entirely blank lines. O

at

28 THE C PROGRAMMING LANGUAGE CHAPTER 1

Exetcise 1-17. Write a function reverse (s} which reverses the character
string s. Use it to write a program which reverses its input a line at a time.
ad

1.10 Scope, External Variables

The variables in main (line, save, etc.) are private or local to main;
because they are declared within main, no other function can have direct
access to them. The same is true of the variables in other functions; for
example, the variable i in getline is unrelated to the i in copy. Each
local variable in a routine comes into existence only when the function is
called, and disappears when the funcuon is exited. Tlt is for this reason that

“such variables are usually known as automatic variables, following terminol-

ogy in other languages. We will use the term automatic henceforth to refer
to these dynamic local variables. (Chapter 4 discusses the static storage
class, in which local variables do retain their values between function invo-
cations.)

Because automatic variables come and go with function invocation, they
do not retain their values from one call to the next, and must be explicitly

set upon n each entry. If they are not set, they will contain garbage ™

~Asan altermative to automatic variables, il is possible to define variables
which are external lo all functions, that is,_ global variables which can be
accessed by name by any function that cares to. (lhis mechanism is tather
fike Fortran COMMON or PL/1 EXTERNAL.) Because exiernal variables are
globally accessible, they can be used instead of argument t lists to communi-
cate —tiata- berweerr functions. Furthermore, because external variables
remain in existence permanently, rather than appearing and disappearing as
functions are called and exited, they retain their values even after the func-
tions that set them are done.

An external variable has to be defined outside of any function; this allo-
cates actual storage for it. The variable must also be declared in each func-
tion that wants to access it; this may be done either by an explicit extern
declaration or implicitly by context. To make the discussion concrete, let us
rewrite the longesi-line program with line, save and max as external vari-
ables. This requires changing the calls, declaratiens, and bodies of all three
functions.

CHAPTER 1 A TUTORIAL INTRODUCTION 29

#define MAXLINE 1000 /% maximum input line size =/

char line [MAXLINE]; /% input line =/
char save[MAXLINE]; /# longest line saved here +/
int wmax; /+* length of longest line seen so far #/

main() /% find longest line; specialized version */
{

int len;

extern int max;

extern char savel[l];

max = 0;
while ((len = getline()) > 0)
if (len > max) (
max = len;
copy () ;
)
if (max > 0) /* there was a line */
printf ("%s", save);

}

getline(} /% specialized version +/

{
e el el - j-pmghlv. tav Wil C-’!CF'I--‘HI"L, va~alblar
extern char line(]; 4 ,)
Hinatwy | erne” T et dpat by '5 Arefive

for (i = 0; i < MAXLINE-1 ¢ yuan. ;
&& {c=getchar(}) != EQF && ¢ != ’\n’; ++i)

linefi] = c;
EFE ee==r R
line[i] = &;
++i;

}
line[i]l = ’\0‘¢;
returni{i);

30 THE C PROGRAMMING LANGUAGE CHAPTER 1

copy {) /* specialized version */
{

int i;

extern char linel], savel];

dy =l
while ((savel[i] = line[i]) != *\0*)
++1}
}

The external variables. in main, getline and copy are defined by the
first lines of the example above, which state their type and cause storage 1o
be allocated for them. Syntactically, external definitions are just like the
declarations we have used previously, bul since they occur outside of func-
tions, the variables are external. Before a funclion can use an external vari-
able, the name of the variable must be made known to the function. One
way to do this is 10 wrile an extern declgration in the function; the daclara-
tion is the same as before except for the added keyword extern.

In certain circumstances, the extern declaration can be omitted: if the
exlernal definition of a variable occurs in the source file before its use in a
particular function, then there is no need for an extern declaration in the
function. The extern declarations in main, getline and copy are thus
redundant. In fact, common practice is to place definitions of all external
variables at the beginning of the source file, and then omit all extern
declarations.

If the program is on several source files, and a variable is defined in,
say, filel and used in fife2, then an extern declaration is needed in file? to
connect the two occurrences of the variable. This topic is discussed at
length in Chapter 4.

You should note that we are using the words declaration and definition
carefully when we refer to external variables in this section. *‘Definition’
refers to the place where the variable is actually created or assigned storage;
“*declaration’” refers to places where the nature of the variable is stated but
no storage is allocated.

By the way, there is a tendency to make everything in sight an extern
variable because it appears to simplify communications — argument lists are
short and variables are always there when you want them. But external vari-
ables are always there even when you don’t want them. This style of coding
is fraught with peril since it leads to programs whose data connections are
not at all obvious — variables can be changed in unexpected and even inad-
vertent ways, and the program is hard to modify if it becomes necessary.
The second version of the longest-line program is inferior to the first, partly
for these reasons, and partly because it destroys the generalily of two quite
uselul functions by wiring into them the names of the variables they will
manipulate.

CHAPTER 1 A TUTORIAL INTRODUCTION 31

Exercise 1-18. The test in the for statement of getline above is rather
ungainly. Rewrite the program to make it clearer, but retain the same
behavior at end of file or buffer overflow. [s this behavior the most reason-
able? 0O

1.11 Summary

At this point we have covered what might be called the conventional
core of C. With this handful of building blocks, it's possible to write useful
programs of considerable size, and it would probably be a good idea if you
paused long enough to do so. The exercises that follow are intended to give
you suggestions for programs of somewhat greater complexity than the ones
presented in this chapter.

After you have this much of C under control, it will be well worth your
effort to read on, for the features covered in the next few chapters are
where the power and expressiveness of the language begin to become
apparcnt.

Exercise 1-19. Write a program detab which teplaces tabs in the input
with the proper number of blanks to space to the next tab stop. Assume a
fixed set of tab stops, say every » positions. O

Exercise 1-20. Write the program entab which replaces strings of blanks
by the minimum number of tabs and blanks to achieve the same spacing.
Use the same 1ab stops as for detab., O

Exercise 1-21. Write a program to ‘‘fold” long input lines after the lasl
non-blank character that occurs before the n-th column of input, where n is
a parameter. Make sure your program does something intelligent with very
long lines, and if there are no blanks or tabs before the specified column. O

Exercise 1-22. Write a program to remove all comments from a C program.
Don’t forget to handle quoted strings and character constants properly. O

Exercise 1-23. Write a program to check a C program for rudimentary syn-
tax errors like unbalanced parentheses, brackets and braces. Don’t forget
about quotes, both single and double, and comments. (This program is hard
if you do it in full generality.) O

...III'I l;Tr.'..‘_ﬂ-’?,._,l Y '.'.JI!. 5 .G.I'." = i NI i ‘|II' l'\?\‘
} k. -‘i_‘ll 1 I T A, . . ('”li".'z) g ;J

=L ::‘ll' e A i e 1
In .Pif 5 ﬁ‘, ul'::." ‘r' I'| | .'_\ : '|'I ,' . "r‘l‘ ' 4 5 Y “:-g' 1‘:“-0\
l'L'.",’ = A "l‘ ! [-‘_’{'_'” n e ol e, L . =l |

i i " K
gt SR NG W e e o e
J 1] -L"I A .I [; “f "‘ | T B 4 ~ N g1 N ! |

- : ‘l‘i't."]] i] 2™ I.I]
1 7t . e b o L 1
1 _.'___"_,,'r_"-‘ ‘IJ Ik R .,&n‘f-- LA U Iw\Ll-. e, Tol

L " b e
“'n R o1), L - I"_._*_ L Tk, __—‘“j" of = ki) =) _q;'I
IL i I ‘“.|.L. L - ;‘:q‘ X , '|‘. .mll-l L L’h ‘I}TI bﬂ‘ .. .
b I,_Jl't‘l, e .!W, f 1] A ke :

b s VR ey R

R ,',.lrrf]r. Rl .m-,__ -
e - Lol ll, e
) !]ﬁ"ll.tﬂ FE'H‘T”.F{P‘] lII.IF ARTH t'[J'1I“ e
}I—I . | -I\ ,.l' I|. |'“‘ :
i .F?\ \ TH LLn I"H J ? J 1 1 | |j‘ f'. -j‘l‘: ulll-r'
i i -m:..u it R A
l Id\lk Ul vy _Il'HI ‘Jl,,!ll.l..fl ""l |u-'r
et s R R it
:!:L 1 |”5\’.}' |'| ' |-|"J‘ by o onliy

1 'R riohiea nw'wrwﬁ] wUM L
i . o
R
A h \I‘Iﬂ. '}I-I."H-‘—'I'
T TLURE TR AT ST LR
al ..S-E'l o T o
E‘I&I‘m) Hﬂ'.’"‘ll.' e |Is.l .|t17
r"‘ILU“ '_#1':'” f“;J\!Il ;-

. \|1 » 1 [T e "':p

CHAPTER 22 TYPES, OPERATORS AND EXPRESSIONS

Variables and constants are the basic data objects manipulated in a pro-
gram, Declarations list the variables to be used, and state what type they
have and perhaps what their initial values are. Operators specify what is to
be done to them. Expressions combine variables and constants to produce
new values. These are the topics of this chapter.

2.1 Variable Names

Although we didn’t come right out and say so, there are some restric-
tions on variable and symbolic censtant names. Names are made up of
letters and digits; the first character must be a letter. The underscore *“_*"
counts as a letter; it is useful for improving the readability of long variable
names. Upper and lower case are different; traditional C practice is to use
lower case for variable names, and all upper case for symbolic constants.

Only the first eight characters of an internal nmame are significant,
although more may be used. For external names such as function names
and external variables, the number may be less than eight, because external
names are used by various assemblers and loaders. Appendix A lists details.
Furthermore, keywords like if, else, int, £1loat, etc., are reserved: you
can’t use them as variable names. (They must be in lower case.)

Naturally it’s wise to choose variable names that mean something, that
are related to the purpose of the variable, and that are unlikely (o get mixed
up typographically.

2.2 Data Types and Sizes

There are only a few basic data types in C:

33

34 THE C PROGRAMMING LANGUAGE CHAPTER 2

char a single byte, capable of holding one character
in the local character set.
int an integer, typically reflecting the natural size

of integers on the host machine.
float single-precision floating point.
double double-precision floating point.

In addition, there are a number of qualifiers which can be applied to
int’s: short, long, and unsigned. short and long refer to different
sizes of integers. unsigned numbers obey the laws of arithmetic moduio
2% where n is the number of bits in an int: unsigned numbers arc
always positive. The declarations for the qualifiers look like

short int x;
long int v;
ungigned int z;

The word int can be omilted in such situations, and typically is.
The precision of these objects depends on the machine at hand; the
table below shows some representative values.

DEC PDP-11 Honeywell 6000 1BM 370 Interdata 8/32

ASCIH ASCII EBCDIC ASCH
char & bits 9 bits 8 bits 8 bits
int 16 36 32 32
short 16 36 16 16
long 32 36 32 32
float 32 36 32 32
double 64 72 64 64

The intent is that short and long should provide different lengths of -
integers where practical; int will normally reflect the most “*natural” size
for a particular machine. As you can see, each compiler is free to interpret
short and long as appropriate for its own hardware. About all you should
count on is that short is no longer than long.

2.3 Constants

int and float constants have already been disposed of, except to note
that the usual

123.456e-7
or
0.12E3

*“‘scientific’’ notation for £1loat’s is also legal. Every floating point constant

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 35

is taken to be double, so the ““e” notation serves for both float and
double. _

Long constantsare written in the style 123L. An ordinary integer con-
slani that is't60 long to fit in an int is also taken to be a long.

There is a notation for octal and hexadecimal constants: a leading 0
(zero) on an int constant implies octal; a leading Ox or 0X indicates hexa-
decimal. For example, decimal 31 can be written as 037 in octal and 0x1 £
or 0X1F in hex. Hexadecimal and octal constants may also be followed by
L to make them long.

A character constant is a single character written witkin single quotes, as
in 'x’. The value of a character censtant is the numeric value of the char-
acter in the machine’s character set. For example, in the ASCII character set
the character zero, or /07, is 48, and in EBCDIC ‘0’ is 240, both quite
different from the numeric value 0. Writing ‘0 instead of a numeric value
like 48 or 240 makes the program independent of the particular value.
Character constants participate in numeric operations just as any other
numbers, although they are most often used in comparisons with other char-
acters. A later sectlion treats conversion rules.

Certain non-graphic characters can be represented in character constants
by escape sequences like \n (newline}, \t (tab), \0 (null), \\ (backslash),
* (single quote), etc., which look like two characters, but are actually only
one. In addition, an arbitrary byte-sized bit pattern can be generated by
writing

" Nddd
where ddd is one to three octal digits, as in
#define FORMFEED ’'\014- /% ASCIT form feed =/

The character constant ’\0’ represents the character with value zero.
*\0’ is often written instead of 0 to emphasize the character nature of
S0me expression.

A constant expression is an expression that involves only constants. Such
expressions are evaluated at compile time, rather than run time, and accord-
ingly may be used in any place that a constant may be, as in

#define MARLINE 1000
char line [MAXLINE+1];

or
seconds = 60 % 60 % hours;

A string constant is a sequence of zero or more characters surrounded by
double quotes, as in

"I am a string"

36 THE C PROGRAMMING LANGUAGE CHAPTER 2

or
AL f* a null string */

The quotes are not part of the string, but serve only to delimit it. The same
escape sequences used for character constants apply in strings; \" represents
the double quote character.

Technically, a string is an array whose elements are single characters.
The compiler automatically places the null character \0 at the end of each
such string, so programs can conveniently find the end. This represeniation
means that there is no real limit to how long a string can be, but programs
have 10 scan one completely to determine its length. The physical storage
required is one more location than the number of characters written
between the quotes. The following function strlen (s} returns the length
of a character siring s, excluding the terminal \0.

strlenis) /+* return length of s =/
- char sl];
a {
int 1i;

i = 0;

while (s[i] != ’\0Q’)
++1i;

return{i);

)

Be careful to distinguish between a character constant and a string that
contains a single character: ’x* is not the same as "x". The former is a
single character, used 1o produce the numeric value of the letter x in the
machine’s character set. The latter is a character string that contains one
character (the letter x) and a \0.

2.4 Declarations

All variables must be declared before use, although certain declarations
can be made implicitly by context. A declaration specifies a type, and is fol-
lowed by a list of ocne or more variables of that type, as in

int lower, upper, step;
char ¢, line[1000];

Variables can be distributed among declarations in any fashion; the lists
above could equally well be written as

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 37

int lower;

int upper;

int step;

char ¢;

char line[1000];

This latter form takes more room, but is convenient for adding a comment
to each declaration or for subsequent modifications. .

Variabies may also be initialized in their declaration, although there are
some restrictions. If the name is followed by an equals sign and a constant,
that serves as an initializer, as in

char backslash = '\\’;
int i = 0; L
float eps = 1.0e-5;

If the variable in question is external or static, the initialization is done
once only, conceptually before the program starts executing. FExplicitly ini-
tialized automatic variables are initialized each time the function they are in
is called. Automatic variables for which there is no explicit initializer have
undefined (i.e., garbage) values. External and static variables are initialized
to zero by default, but it is good style to state the initialization anyway.

We will discuss initialization further as new data types are introduced.

2.5 Arithmetic Operators D > ovwd

The binary arithmetic operators are +, —, *, /, and the modulus opera-
tor %. There is a unary —, but no unary +,
Integer division truncates any fractional part. The expression

X%y

produces the remainder when x is divided by y, and thus is zero when v
divides x exactly. For example, a year is a leap year if it is divisible by 4
but not by 100, except that years divisible by 400 are leap vears. Therefore

if (year % 4 == 0 && vear % 100 !'= 0 || year % 400 == 0)
it’s a feap year
else
it's not
The % operator cannot be applied to £loat or double.

The + and - operators have the same precedence, which is lower than
the (identical) precedence of *, /, and %, which are in turn lower than
unaty minus. Arithmﬂiiﬂ)_er_at_o_rs_grgwm;’ht. (A table at the end
of this chapter summarizes precedence and associativity for all operators.)}
The order of evaluation is not specified for associative and commutative
operators like * and +; the compiler may rearrange a parenthesized compu-
tation involving one of these. Thus a+(b+c) can be evaluated as

38 THE C PROGRAMMING LANGUAGE CHAPTER 2

{a+b)+c. This rarely makes any difference, but if a particular order is
required, explicit temporary variables must be used.

The action taken on overflow or underflow depends on the machine at
hang.

2.6 Relational and Logical Operators

The relational operators are
> = = o=

They all have the same precedence. Just below them in precedence are the
equality operators:

which have the same precedence. Relationals have lower precedence than
arithmetic operators, so expressions like i < 1lim-1 are taken as
i < (1im-1}, as would be expectled.

More interesting are the logical connectives && and | |. Expressions
lIEEEEfEgTPX_E%;fE;#_Liﬂg—gigh““EG"kﬂl‘“llighL and evaluation stops a5
soon as the fruth or falsehood of the result is known. These propertics are
critical to writing programs that work. For example, here is a loop from the
input function getline which we wrote in Chapter 1.

for {i=0; i<lim-1 && {(c=getchar(}) != ‘\n’ && c l= EOF; ++i)
s[i] = ¢;

Clearly, before reading 4« new character it is necessary to check that there is
room to store it in the array s, so the test i<lim—1 must be made first,
Not only that, but if this test fails, we must not go on and read another
characier.

Similarly, it would be unfortunate if ¢ were tested against EOF before
getchar was called: the cail must occur before the character in ¢ is tested.

The precedence of && is greater than that of 11, and both are lower
than relational and equality operators, so expressions like

i<lim-1 && (¢ = getchar()) != '\n’' 8& ¢ !'= EOP

need no extra parentheses. But since the precedence of != is higher than
assignment, parentheses are needed in.

{c = getchar(})) != ’'\n’

to achieve the desired result.

The unary negaticn operator ! converts a non-zero or true operand into
0, and a zero or false operand into 1. A common use of ! is in construc-
tions like

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 39

if {!inword)
rather than
if {inword == 0)

I’s hard to generalize about which form is better. Constructions like
linword read quite nicely (“*if not in word’’), but mere complicated ones
can be hard 1o understand.

Exercise 2-1. Write a loop equivalent to the for loop above without using
&&. O Livicke Sie) e o R N 3§

2.7 Type Conversions ¢

When operands of different types appear in expressions, they are con-
verted to a common type according to a small number of rules, In general,
the only conversions that happen automatically are those that make sense,
such as converting an integer to floating point in an expression like £ + i.
Expressions that don't make sense, like using a £loat as a subscript, are
disallowed.

—> First, char’s and int’ intermi in_arithmetic expres-
sions: every char in an expression is automatically converted 1o an int.
This permits considerable flexibility in certain kinds of character transforma-
tions. Onc is exemplified by the function atoi, which converts a string of
digits into its numeric equivalent.

atoi (s} /% convert 5 to integer */
char s[];
{
int i, n;
o= 8l
for (i = 0; s[i] »>= "0’ && s[i] <= '9¢; ++i)
n=10 %« n + s[i] - '0’;
return(n);

}
As we discussed in Chapter 1, the expression
s[i] - '@~

gives the numeric value of the character stored in s[i] because the values
of "0/, 1+, etc., form a contiguous increasing positive sequence.

Another example of char lo int conversion is the function lower
which maps a single character o lower case for the ASCIH character set only.
If the character is not an upper case letter, lower returns it unchanged.

40 THE C PROGRAMMING LANGUAGE CHAPTER 2

lower (c} /* convert ¢ to lower case; ASCII only */
int ¢;
(
if (c »= 'A* R& Cc <= ‘'Z')
return{c + ‘a' — ‘A'};
else
returni{c);

}

This works for ASCII because corresponding upper case and lower case
letters are a fixed distance apart as numeric values and each alphabet is con-
tiguous — there is nothing but letters between 4 and Z. This latter obser-
vation is not true of the EBCDIC character set (IBM 360/370), so this code
fails on such systems — il converts more than letters.

There is one subtle point about the conversion of characters to integers.
The language does not specify whether variables of type char are signed or
unsigned quantities. When a char is converted to an int, can it ever pro-
duce a wnegative integer? Unfortunately, this varies from machine to
machine, reflecting differences in architecture. On some machines (PDP-11,
for instance), a char whose leftmost bit is 1 will be converted to a negative
integer (*‘sign extension’}. On others, a char is promoted to an int by
adding zeros at the left end, and thus is always positive.

The definition of C guarantees that any charactet in the machine’s stan-
dard character set will never be negative, so these characters may be used
freely in expressions as positive quantities. But arbitrary bit patterns stored
in character variables may appear to be negative on some machines, yet
positive on others.

The most common occurrence of this situation is when the value -1 is
used for EOF. Consider the code

€har c;
"

c = getchar();
if (¢ == EOF)

On a machine which does not do sign extension, c is always positive
because il is a char, yet EQF is negative. As a result, the test always fails.
To avoid this, we have been careful to use int instead of char for any
variable which holds a value returned by getchar.

The real reason for using int instead of char is not related to any
questions of possible sign extension. It is simply that getchar must return
all possible characters (so that it can be used (0 read arbitrary input) and, in
addition, a distinct EOF value. Thus its value cannot be represented as a
char, but must instead be slored as an int.

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 41

Another useful form of automatic type conversion is that relational
expressions like i > 3 and logical expressions connected by && and I | are
defined to have value 1 if true, and O if false. Thus the assignment

isdigit = ¢ >= ‘0’ && ¢ <= '9’;

sets isdigit o 1 if c is a digit, and to O if not. (In the test part of if,
while, for, etc., *‘true’” just means ““non-zerc.”’}

Implicit arithmetic conversions work much as expected. In general, if
an operator like + or * which takes two operands (a “‘binary operator’”) has
operands of different types, the *‘lower™ type is pronioted to the ‘‘higher’
type before the operation proceeds. The result is of the higher type. More
precisely, for each arithmetic operator, the following sequence of conversion
rules is applied.

char and short are converted to int, and float is converied to
double.

Then if either operand is double, the other is converted to
double, and the result is double.

Otherwise if either operand is long, the other is converted to
long, and the result is long.

Otherwise if either operand is unsigned, the other is converted to
unsigned, and the result is unsigned.

Otherwise the operands must be int, and the resuit is int.

Notice that all float’s in an expression are converted to double; all float-
ing point arithmetic in C is done in double precision.

— Conversions take place across assignments; the value of the right side is
converted 1o the type of the left, which is the type of the result. A charac-
ter is converted to an integer, either by sign extension ot not, as described
above, The reverse operation, int to char, is well-behaved — excess
high-order bits are simply discarded. Thus in

int i,
char c}
i=¢;
c = 1i;

the value of c is unchanged. This is true whether or not sign extension is
involved,
If xis float and i is int, then

X =i

and

42 THE C PROGRAMMING LANGUAGE CHAPTER 2

i = x

both cause conversions, float to int causes truncation of any fractional
part. double is converted to £loat by rounding. Longer int’s are con-
verted to shorter ones or to char’s by dropping the excess high-order bits.

Since a function argument is an expression, type conversions also take
place when arguments are passed to functions: in particular, char and
short become int, and float becomes double. This is why we have
declared function arguments to be int and double even when the func-
tion is called with char and float.

Finally, explicit type conversions can be forced (“*coerced’’) in any
expression wilh a construct called a cast. In the construction

(type-name } expression

the expression is converted to the named type by the conversion rules above.
The precise meaning of a cast is in fact as if expression were assigned to a
variable of the specified type, which is then used in place of the whole con-
struction. For example, the library routing sgrt expects a double argu-
ment, and will produce nonsense if inadvertently handed something else.
So if n is an integer,

sqgrt({double) n)

converts nsto double before passing it to sqrt. (Note that the cast pro-
duces the value of n in the proper type: the actual content of n is not
altered.} The cast operator has the same precedence as other unary opera-
tors, as summarized in the table at the end of this chapter.

Exercise 2-2. Write the function htoi (s), which converts a string of
hexadecimal digits into its equivalent integer value. The allowable digits are
0 through 9, a through f, and A through F. O

2.8 Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing
variables. The increment operator ++ adds 1 1o its operand; the decrement

operator —— subtracts 1. We have freguenily used ++ to increment vari-
ables, as in
if {c == ’‘\n’)
++nl;
The unusuval aspect is that ++ and —— may be used either as prefix

operators (before the variable, as in ++n), or postfix (after the variable:
n++). In both cases, the effect is to increment n. But the expression ++n
increments n before using its value, while n++ increments n affer its value
has been used. This means that in a context where the value is being used,

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 43

not just the effect, ++n and n++ are different. If n is 5, then
X = n++}

sets x 1o 3, but
X = +4n;

sets x to 6. In both cases, n becomes 6. The increment and decrement
operators can only be applied to variables; an expression like x={i+5) ++ is
illegal.
In a context where no value is wanted, just the incrementing effect, as
in
if (¢ == '\n')
nl++;

choose prefix or postlix according to taste. But there are situations where
one or the other is specifically called for. For instance, consider the func-
tion squeeze(s, c) which removes all occurrences of the character ¢
from the string s.

squeeze(s, c} /» delete all c from 5 */
char s[];

int c;

{

int i, j;

for (i = 3 = 0; s[i]l = *\NO*; i++)
if (s[i] !'= ¢)
s(j++] = s[i];
s{j] = '\NO*;

!

Each time a non-c occurs, il is copied into the current j position, and only
then is j incremented to be ready for the next character. This is exactly
equivalent to !

Another example of a similar construction comes from the getline
function which we wrote in Chapter 1, where we can replace

if {¢ == '\n*) |
s[i] = e;
++1;

H

by the more compact S

44 THE C PROGRAMMING LANGUAGE CHAPTER 2

if (¢ == '\n’)
sli++] = c;

As a third example, the function strcat({s, t) concatenates the
string t te the end of the string 5. strcat assumes that there is enough
space in s 1o hold the combination.

strecat(s, t} /* concatenate t to end of s %/
char s[]l, t[l; /% s must be big enough */
{

int i, 3;

i=j=0:

while (s[i] !'= '\0") /* find end of s */
i++;

while {{s[i++) = t{j++]) != "\0’} /» copy t =*/

}
As each character is copied from t to s, the postfix ++ is applied te both i

and j to make sure that they are in position for the next pass through the
loop.)

Exercise 2-3. Write an alternate version of squeeze(s1, s2) which
deletes each character in s1 which matches any character in the string s2.
a

Exercise 2-4. Write the function any(s1, s2) which returns the first
location in the string s1 where any character from the string s2 occurs, or
-1 if s1 contains no characters from s2. O

2.9 Bitwise Logical Operators

C provides a4 number of operators for bit manipulatien; these may not
be applied to float or double.

& bitwise AND

| bitwise inclusive OR

2 bitwise exclusive OR

<< left shift

»>> right shift

= one’s cornplement (unary)

The bitwise AND operator & is often used to mask off some set of bits; for
example,

c=n& 017%;

sets to zero all but the low-order 7 biis of n. The bitwise OR operator | is
used to turn bils on:

CHAPTER 2 TYPES, OPERATORS AND EXPRESSIONS 45

x = x | MASK;

sets to one in x the bits that are set to one in MASK.

You should carefully distinguish the bitwise operators & and | from the
logical connectives && and ||, which imply left-to-right evaluation of a
truth value. For example, if x is 1 and y is 2, then x & v is zero while
x && yis one. (Why?)

The shift operators << and »>> perform left and right shifts of thelr left
operand by the number of bit positions given by the right operand. Thus
x << 2 shifts x left by two positions, filling vacated bits with 0; this is
equivalent to multiplication by 4. Right shifting an unsigned quantity filis
vacated bits with 0. Right shifting a signed quantity will fill with sign bits
(**arithmetic shift’’) on some machines such as the PDP-11, and with 0-bits
(“‘logical shift’*) on others.

The unary operator ~ yields the one’s complement of an integer; that is,
it converts each 1-bit into a 0-bit and vice versa. This operator typically
finds use in expressions like

X & “077

which masks the last six bits of x to zero. Note that x & ~077 is indepen-
dent of word length, and is thus preferabie to, for example, x & 0177700,
which assumes that x is a 16-bit guantity. The portable form involves no
extra cost, since ~077 is a constant expression and thus evaluated at com-
pile time.

To illustrate the use of some of the bit operators, consider the function
getbits(x, p, n) which returns (right adjusted) the n-bit field of x
that begins at position p. We assume that bit position 0 is al the right end
and that mn and p are sensible positive wvalues. For example,
getbits(x, 4, 3) returns the three bits in bit positions 4, 3 and 2, right
adjusted.

getbits{x, p, n) /+* get n bits from position p */
unsigned x, p, n;
{
return({x »>» (p+1-n)) & ~ ("0 << n});
]

x »> {p+1-n) moves the desired field to the right end of the word.
Declaring the argument % to be unsigned ensures that when it is right-
shifted, vacated bits will be filled with zeros, not sign bits, regardless of the
machine the program is run on. -0 is all 1-bits; shifting it left n bit posi-
tions with ~Q << n creates a mask with zeros in the rightmost n bits and
ones everywhere else; complementing that with ~ makes a mask with ones
in the rightmost n bits, :

46 THE C PROGRAMMING LANGUAGE CHAPTER 2

Exercise 2-5. Modify getbits to number bits from left to right. O

Exercise 2-6. Write a function wordlength () which computes the word
length of the host machine, that is, the number of bits in an int. The
function should be portable, in the sense that the same source code works
on all machines. O

Exercise 2-7. Write the function rightrot(n, b) which rotates the
integer n to the right by b bit positions. O

Exercise 2-8. Write the function invert(x, p, n) which invens (ie.,
changes | into 0 and vice versa) the n bits of x that begin at position p,
leaving the others unchanged. O

2.10 Assignmeni{ Operators and Expressions
Expreésions such as
i=41i+2
in which the left hand side is repeated on-the right can be written in the
compressed form
i += 2

using an assignment operator like +=,
Most binary operators {(operators like + which have a left and right
operand) have a corresponding assignment operator op=, where op is one of

+ < * A % << > & - |
If el and e2 are ekpressions, then
el op= e2
is equivalent to
el = (el) op (e2)
except that el is computed only once. Notice the parentheses around e2:
X #=y + 1
is actually
X=x % (y +1)
rather than
x=x*y+1

As an example, the function bitcount counts the number of 1-bits in
its integer argument.

CHAPTER 2 TYPES. OPERATORS AND EXPRESSIONS 47

bitcount {n) /% count 1 bits in n */
unsigned n;
{

int b;

for (b =0; n !=0; n >>= 1)
if (n & 01)
b++;
return (b} ;

}

Quite apart from conciseness, assignment operators have the advantage
that they correspond better to the way people think. We say “‘add 2 to i*
or ‘‘increment i by 2, not ““take i, add 2, then put the result back in i."
Thus i += 2. In addition, for a complicated expression like

yyval [yypv(p3+p4] + yypvipt+p2]] += 2

the assignment operator makes the code easier to understand, since the
reader doesn’t have to check painslakingly that two long expressions are
indeed the same, or to wonder why they're not. And an assignment opera-
tor may even help the compiler to produce more efficient code.,

We have already used the fact that the assignment statement has a value
and can occur in expressions; the most common example is

while ({¢ = getchar()} != EQF)

Assignments using the other assignment operators (+=, —=_ etc.) can also
occur in expressions, although it is a less frequent occurrence.
The type of an assignment expression is the type of its left operand.

Exercise 2-9. In a 2’s complement number system, x & (x-1} deletes the
rightmost I-bit in x. (Why?) Use this observation to write a faster version
of bitcount. O :

2.11 Conditional Expressions

The statements

if {a > b}
Z = a;
else
z =bhb;

of course compute in z the maximum of a and b. The conditional expres-
sion, written with the ternary operator “*?:", provides an alternate way to
write this and similar constructions. I[n the expression

48 THE C PROGRAMMING LANGUAGE ' CHAPTER 2

el 7 e2 ¢+ o3

the expression e/ is evaluated first. If it is non-zero (true), then the expres-
sion 2 is evaluated, and that is the value of the conditional expression.
Otherwise 3 is evaluated, and that is the value. Only one of e2 and &7 is
evaluated. Thus to set z to the maximum of a and b,

z=(a>h) 7 a: b; /+ 2z = maxl(a, b) */

It should be noted that the conditional expression is indeed an expres-
sion, and it can be used just as any other expression. If &2 and e? are of
different types, the type of the result is determined by the conversion rules
discussed earlier in this chapter. For example, if £ is a £leoat, and n is an
int, then the expression

n>0) 2 £ 1 n

is of type double regardless of whether n is positive or not.

Parentheses are not necessary around the first expression of a condi-
tional expression, since the precedence of ?: is very low, just above.assign-
ment. They are advisable anyway, however, since they make the condition
part of the expression easier to see,

The conditional expression often leads to succinct code. For example,
this loop prints N elements of an array, 10 per line, with each column
separated by one blank, and with each line {(including the last} terminated by
exactly one newline.

for (i = 0; i < N; di++}
printf {*%6d%c", ali}, (i%10==9 || i==N-1} ? ‘\n’ : '

A newline is prinled after every tenth element, and after the N-th. All other
elements are followed by one blank. Although this might look tricky, it’s
instructive to tty to write it without the conditional expression.

Exercise 2-10. Rewrite the function lower, which converts upper case
letters to lower case, with a conditional expression instead of if-else. O

2.12 Precedence and Order of Evaluation

The table below summarizes the rules for precedence and associativity
of all operators, including those which we have not yet discussed. Operators
on the same line have the same precedence; rows are in order of decreasing
precedence, so, for example, %, #, and % all have the same precedence,
which is higher than that of + and -,

J);

!);

CHAPTER 2 - TYPES, OPERATORS AND EXPRESSIONS 49

QOperator Associalivity
(y [-»> . left to right
P = 44 — - {(twpe) * & sizeof right to left
* /% left to right
+ - left 1o right
<L B left to right
< <= > > left to right
== I= left to right
& left to right
~ left to right
| left to right
&& left to right
11 left to right
o right to left
= += —= elc. right to left
7 {Chapter 3) left to right

The operators —> and . are used to access members of structures; they will
be covered in Chapter 6, along with sizeof (size of an object). Chapter 5
discusses * {indirection) and & (address of).

Note that the precedence of the bitwise logical operators &, ~ and | falls
below == and !=. This implies that bit-testing expressions like

if ({x & MASK) == 0)

must be fully parenthesized to give proper results.

As mentioned before, expressions involving one of the associative and
commutative operators {#, +, &, ~, |) can be rearranged even when
parenthesized. In most cases this makes no difference whatsoever; in situa-
tions where it might, explicit temparary variables can be used to force a par-
ticular order of evaluation.

C, like most languages, does not specify in what order the operands of
an operator are evaluated. For example, in a statement like

x=1f£0) +gl);

f may be evaluated before g or vice versa; thus if either £ or g alters an
external variable that the other depends on, x can depend on the order of
evaluation. Again, intermediate results can be stored in temporary variables
to ensure a particular sequence.

50 THE C PROGRAMMING LANGUAGE CHAPTER 2

Similarly, the order in which function argumenits are evaluated is not
specified, so the statement

printf ("%d %d\n", ++n, power(2, n)); /% WRONG */

can (and does) produce different results on different machines, depending
on whether or not n is incremented before power is called. The solution,
of course, is to write

++n;
printf {("%d %d\n", n, power (2, n));

Function calls, nested assignment statements, and increment and decre-
ment operators cause ‘‘side effects”” — some wvariable is changed as a by-
product of the evaluation of an expression. In any expression involving side
effects, there can be subtle dependencies on the order in which variables
taking part in the expression are stored. One unhappy situation is typified
by the statement

alil = i++;

The question is whether the subscript is the old value of i or the new. The
compiler can do this in different ways, and generate different answers
depending on its interpretation. When side effects (assignment to actual
variables) takes place is left to the discretion of the compiler, since the best
order strongly depends on machine architecture,

The moral of this discussion is that writing code which depends on order
of evaluation is a bad programming practice in any language. Naturally, it is
necessary to know what things to avoid, but if you don’t know how they are
done on various machines, that innocence may help to protect you. (The C
verifier finr will detect most dependencies on order of evaluation.)

CHAPTER 3: CONTROL FLOW

The control flow statements of a language specify the order in which
computations are done. We have already met the most ¢common control
flow constructions of C in earlier examples; here we will complete the set,
and be more precise about the ones discussed before.

3.1 Statements and Blocks

An expression such as x = 0 or i++ or printf{...} becomes a
statement when it is followed by a semicolon, as in

x = 0;

14+;

printf(...};
In C, the semicolon is a statement terminator, rather than a separator as it is
in Algoi-like languages.

The braces { and)} are used to group declarations and statements
together into a compound statement or block so that they are syntactically
equivalent to a single statement. The braces that surround the statements of
a function are one obvious example; braces around multiple statements after
an if, else, while or for are another. (Variables can actually be
declared inside any block; we will talk about this in Chapter 4.) There is
never a semicelon after the right brace that ends a block.

3.2 If-Else

The if-else statement is used 1o make decisions, Formally, the syn-
tax is

if {expression)
statement-1
else
sta1ement-2

where the else part is optional. The expression is evaluated: if it is “‘true”

51

52 THE C PROGRAMMING LANGUAGE CHAPTER 3

(that is, if expression has a non-zero value), statement-! is done. If it is
“false” (expression is zero) and if there is an else part, statement-2 is exe-
cuted instead. 7

Since an if simply’tests the numeric value of an expressnon certain
coding shortcuts are possible. The most obvious is wntmg

if (expression) .
instead of
if (expression l= Q) (A

Sometimes this is natural and clear; at other times it is cryptic.

Because the else part of an if-else is optional, there is an ambiguity
when an else is omitted from a nested if sequence. This is resolved in
the usual way — the else is associated with the closest previous else-less
if. For example, in

if (n = 0)
if (a > b) =
£z = a;
else
z = b;

the else goes with the inner if, as we have shown by indentation. If that
isn’t what you want, braces must be used to force the proper association:

if (n > 0) {
if (a > b}
zZ = aj
]
else
z = Db;

The ambiguity is especially pernicious in situations like:

if {n > 0)
for (i = 0; i < n; i++)
if (s[i] > 0) {
printf(v...");
return(i);
]
else /% WRONG =/
printf("errer - n is zero\n");

The indentation shows unequivocally what you want, but the compiler
doesn’t gel the message, and associates the else with the inner i£. This
kind of bug can be very hard to find.

By the way, notice that there is a semicolon after 2 = a in

CHAPTER 3 CONTROL FLOW 53

if (a » b)
E = a;
else
zZ = by

This is because grammatically, a statement follows the if , and an expression
statement like z = a is always terminated by a semicolon.

3.3 Else-If
The construction

if (expression)
Staterment

else if (expression)
siatement

else if ({expression)
statement

elss
siatement

occurs so often that it is worth a brief separate discussion. This sequence of
if’s is the most general way of writing a multi-way decision. The
expression’s are evaluated in order; if any expression is true, the statement
associated with it is executed, and this terminates the whole chain. The
code for each starementis either a single statement, or a group in braces.

The last else part handles the “‘none of the above™ or default case
where none of the other conditions was satisfied. Sometimes there is no
explicit action for the default; in that case the trailing

else
statement

can be omitted, or it may be used for error checking to caich an ““impossi-
ble™ condition.

To illustrate a three-way decision, here is a binary search function that
decides if a particular value x occurs in the sorted array v. The elements of
v must be in increasing order. The function returns the position (a number
between 0 and n—1) if x occurs in v, and —1 if not.

'51 THE ¢ PROGRAMMING LANGUAGE CHAPTER 3

binary(x, v, n} /* find x in v[0] ... vin-1] =/
int x, v[}, n; :
{

int low, high, mid;

low = 0;
high = n - 1;
while (low <= high) {
mid = {(low+high} / 2;
if (x « vImidal} —
high = mid - 1;
else if {(x > vI[midl)
low = mid + 1;
else /* found match */
return(mid) ;
]
__9 returni{-1);

] L
The fundamental decision is whether x is less than, greater than, or

equal to the middle element v[mid] at each step; this is a natural for
else—if.

3.4 Switch

The switch statement is a special multi-way decision maker that tests
whether an expression matches one of a number of constant values, and
branches accordingly. In Chapter 1 we wrote a program to count the
occurrences of each digit, white space, and all other characters, using a
sequence of if ... else if ... else. Here is the same program with a
switch.

CHAPTER 3 CONTROL FLOW /55 /

main{) /* count digits, white space, others =/
{
int ¢, i, nwhite, nother, ndigit[10];

nwhite = nother =
for (i =0; i <1
ndigit[i] =

while ((c = getchar()} != EQF)

switch (o) |

case '0°:

case ‘1':

cage '27:

case '37:

case '4°':

case '5':

case '6":

case "7’

N case '8":

case '97;
ndigitlc—'0']1+4;
break;

case ' 3

case "\n’:

case "\t':
nwhite++;
break;

default:
nother++;
break;

}

L printf (Ydigits =");
= for (i = 0; i < 10; i++)
printf (" %d", ndigit[il);
printf ("\nwhite space = %4, other = xd\n",
nwhite, nother);
1

The switch evaluates the integer expression in parentheses (in this
program the character ¢) and compares its value to all the cases. Each case
must be labeled by an integer or character constant or constant expression.
If a case matches the expression value, execution starts at that case. The
case labeled default is executed if none of the other cases is satisfied. A
default is optional; if it isn't there and if none of the cases matches, no
action at all takes place. Cases and default can occur in any order. Cases
must all be different. .

56 THE C PROGRAMMING LANGUAGE CHAPTER 3

The break statement causes an immediate exit from the switch.
Because cases serve just as labels, after the code for one case is done, exe-
cution Jfufls through to the next unless you lake explicit action to escape.
break and return are the most common ways to leave a switch. A
break statement can also be used to force an immediate exit from while,
for and do loops as well, as will be discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows
multiple cases for a single action, as with the blank, tab or newline in this
example. But it also implies that normally each case must end with a
IE:}Qt]; to prevent falling through to the next. Falling through from one
caSe %6 ariother is not robust, being prone to disintegration when the pro-
gram is modified. With the exception of multiple labels for a single compu-
tation, fall-throughs should be used sparingly.

As a matter of good form, put a break after the last case (the
default here) even though it’s logically unnecessary. Some day when
another case gets added at the end, this bit of defensive programming will
save you.

Exercise 3-1. Write a function expand (s, t) which converts characters
like newline and tab into visible escape sequences like \n and \t as it
copies the string s to £. Use a switch. O

3.5 Loops — While and For
We have already encountered the while and for loops. In

while ({expression)
statement

the expression is evaluated. 1f it is non-zero, statement is executed and
expression is re-evaluated. This cycle continues until expression becomes
zero, at which point execution resumes after sratement.

The for statement

for (expri; expr?; expr3)
statement

is equivalent to

exprl ;

while (expr?) {
statement
expri;

)

Grammatically, the three companents of a for are expressions. Most com-
monly, expr! and expr? are assignments or function calls and expr2 is a rela-
tional expression. Any of the three parts can be omitted, although the

CHAPTER 3 CONTROL FLOW 57

semicolons must remain. If expr! or expr3 is left out, itis simply dropped
from the expansion. If the test, expr2, is not present, it is taken as per-
manently true, so

for (;;) |

}

is an ‘‘infinite’” loop, presumably to be broken by other means (such as a
break or return).

Whether to use while or for is largely a matter of taste. For exam-
ple, in

while ((c = getchar{)) == ' ¢ || ¢ == '\n" |l ¢ == '\t*)
b /* skip white space characters =*/

there is no initialization or re-initialization, so the while seems most
natural.

The for is clearly superior when there is a simple initialization and re-
initialization, since it keeps the loop control statements close together and
visible at the top of the loop. This is most obvious in

for (i = D; i < N; i++)

which is the C idiom for processing the first N elements of an array, the ana-

log of the Fortran or PL/I DO loop. The analogy is not perfect, however,

since the limits of a for loop can be altered from within the loop, and the

controlling variable i retains its value when the loop terminates for ,any rea-

son. “Bécause the ‘components of thé for are arbitrary expressmns ‘For”
oops are not restricted to arithmetic progressions. Nonetheless, it is bad

style to force unrelated computations into a for: it is better reserved for

loop control operations.

As a larger example, here is another version of atoi for converting a
_string to its numeric equivalent. This one is more general; it copes with
‘optionial Teading white space and an optional + or - sign. (Chapter 4 shows
atof, which does the same conversion for floating point numbers.)

The basic structure of the program reflects the form of the input:

skip white space, if any
ger sign, if any
gel integer part, convert it

Each step does its part, and leaves things in a clean state for the next. The
whole process terminates on the first character that could not be part of a
number,

58 THE C PROGRAMMING LANGUAGE CHAPTER 3

atoi(s) /* convert s to integer %/
char s[];

int i, n, sign;

for {(i=0; s[il==' * 1| s[il=='\n’ || s{i)=='\t’; i++)}
, foad /* skip white space */
—~—2 ; sign = 1;
if (s[i] == "+’ || s[i] == ="} /% sign =/

sign (s[i++]=="+*}) 7 1 : -1;
for (n = 0; sli] >= 0’ && s[i] <= "9'; i++)
n=10 «n + s[i] - '0’;
return{sign * n);
]

The advantages of keeping loop control centralized are even more obvi-
ous when there are several nested loops. The following function is a Shell
sort for sorting an array of integers. The basic idea of the Shell sort is that
in early stages, far-apart elements are compared, rather than adjacent ones,
as in simple interchange sorts. This tends to eliminate large amounts of
disorder quickly, so later stages have less work to do. The interval between
compared elements is gradually decreased to one, at which point the sort
effeciively becomes an adjacent interchange method.

shell{v, n} /* sort v[0]...v[n-1] into increasing order
int v[], n;
{

int gap, i, j, temp:

for {gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)
for (j=i-gap; j>=0 && v[jl>v[j+tgapl; j-=gap)
temp = v[]j);
vIlil = v[j+gapl;
v[j+gap] = temp;

}

There are three nested loops. The outermost loop controls the gap between
compared elements, shrinking it from n/2 by a factor of two each pass until
it becomes zero. The middle loop compares each pair of elements that is
separated by gap; the innermost loop reverses any that are out of order.
Since gap is eventually reduced o one, all elements are eventually ordered
correctly. Notice that the generality of the for makes the outer loop fit the
same form as the others, even though it is not an arithmetic progression,
One final C operator is the comma **,"*, which most often finds use in
the for statement. A pair of expressions separated by a comma is

*/

4}

24
il

°r.

he

is

CHAPTER 3 CONTROL FLOW 59

evaluated left to right, and the type and value of the result are the type and
value of the right operand. Thus in a for statement, it is possible to place
multiple expressions in the various parts, for example to process two indices
in parallel. This is illustrated in the function reverse (s), which reverses
the string s in place.

reverse(s) /% reverse string s in place */
char s(];
{

InENe e

for (i = 0, j = strlen{s)-1; i < j; i++, j——) {
c = g[i];
s[i] = s[jl;
s3] = ¢;

)

The commas that separate function arguments, variables in declarations,
eic., are nof comma operators, and do #or guarantee left to right evaluation.

Exercise 3-2. Write a function expand(s1, s2) which expands short-
hand notations like a—z in the string s1 into the equivalent complete list
abc...xyz in s2. Allow for letters of either case and digits, and be
prepared to handle cases like a—b—c and a-z0-9 and —a—-z. (A useful
convention is that a leading or trailing — is taken literally.) O

3.6 Loops — Do-while

The while and for loops share the desirable attribute of testing the
termination condition at the top, rather than at the bottom, as we discussed
in Chapter 1. The third loop in C, the do—while, tests at the bottom afier
making each pass through the loop body: the body is always executed at
least once. The syntax is

do
statement
while (expression);

The statement is executed, then expression is evaluated. If it is true, siate-
ment 18 evaluated again, and so on. If the expression becomes false, the
loop terminates.

As might be expected, do-while is much less used than while and
for, accounting for perhaps five percent of all loops. Nonetheless, it is
from time to lime valuable, as in the following function itoa, which con-
verts a number to a character string (the inverse of ateoi). The job is
slightly more complicated than might be thought at first, because the easy

60 THE C PROGRAMMING LANGUAGE CHAPTER 3

methods of generating the digits generate them in the wrong order. We
have chosen to generate the string backwards, then reverse it.

itoa(n, s) /% convert n to characters in s +/
char sl];

int n;

{

int i, sign;

if ({sign = n) < 0} /% record sigh */
n = -n; /* make n positive =/
i=0;
do | /% generate digits in reverse order =/
gli++] = n % 10 + '0‘; /* get next digit «/
} while (in /= 10) > 0); /% delete it x/
if (sign < 0)
Sli+4] = -1
s[i] = ’\D*;
reverse (5);

i

The do—while is necessary, or at least convenient, since at least one char-
acter must be installed in the array s, regardless of the value of n. We also
used braces around the single statement that makes up the body of the
do-while, even though they are unnecessary, so the hasty reader will not
mistake the while part for the beginning of a while loop.

Exercise 3-3. In a 2’s complement number representation, our version of
itoa does not handle the largest negative number, that is, the value of n
equal to —{2%o9size=1) - Explain why not. Modify it to print that value
correctly, regardless of the machine it runs on. D

Exercise 3-4. Write the analogous function itob(n, s) which converts
the unsigned integer n into a binary character representation in s. Write
itoh, which converts an integer to hexadecimal representation. [J

Exercise 3-5. Write a version of itoa which accepts three arguments
instead of twe. The third argument is a minimum field width; the converted
number must be padded with blanks on the left if necessary to make it wide
enough. O

CHAPTER 3 CONTROL FLOW 61

3.7 Break

It is sometimes convenient to be able te control loop exits other than by
testing at the top or bottom. The break statement provides an early exit
from for, while, and do, just as from switch. A break statement
causes the innermost enclosing loop (or switch) to be exited immediately.

The following program removes trailing blanks and tabs from the end of
each line of input, using a break to exit from a loop when the rightmost
non-blank, non-tab is found.

#define MAXLINE 1000

main () /% remove trailing blanks and tabs +/
{

int n;

char line [MAXLINE];

while ((n" = getline({line, MAXLINE)) > D) |
while (——n >= 0} =
if (lineln] != ' ' %§ line[n] 1= "\t

H &g line(n] != '\n’)
break;
line[n#1] = “\0';

printf("%acn", line);

}

getline returns the length of the line. The inner while loop starts at
the last character of 1line (recall that ——n decrements n before usmg the
value), and scans backwards looking for the first character that is not a
' blank, tab or newline. The loop is broken when one is found, or when n
becomes negalive (that is, when the entire line has been scanned). You
should verify thal this is correct behavior even when the line contains onty
white space characters.

An alternative to break is to put the testing in the loop itself:

while ((n = getline(line, MAXLINE}} > 0} {
while (—-—n >= 0

k& (linelnl==’ ’ || linelnl=='\t’)| line[n]l=='\n’)}

]
'
-

}

This is inferior to the previous version, because the (est is harder to under-
stand. Tests which require a mixture of &&, 11, !, or parentheses should
generally be avoided.

62 THE C PROGRAMMING LANGUAGE CHAPTER 3

3.8 Continue

The continue statement is related to break, but less often used; it
causes the next iteration of the enclosing loop (for, while, do} to begin.
In the while and do, this means that the test part is executed immediately;
in the for, control passes to the re-initialization step. (continue applies
only to loops, not to switch. A continue inside a switch inside a loop
causes the next loop iteration,)

As an example, this fragment processes only positive elements in the
array a; negative values are skipped.

for (i = 0; i < N; i++) |
if (ali]l < 0) /* skip negative elements &/
continue;
/% do positive elements ®/
)

The continue statement is often used when the pari of the loop that fol-
lows is complicated, so that reversing a test and indenting another level
would nest the program too deeply.

Exercise 3-6. Write a program which copies its input to its output, except
that it prints only one instance from each group of adjacent identical lines.
{This is a simple version of the UNIX utility umig.) O

3.9 Goto’s and Labels

C provides the infinitely-abusable goto statement, and labels to branch
to. Formally, the goto is never necessary, and in practice it is almost
always easy to write code without it. We have not used goto in this book.

Nonetheless, we will suggest a few situations where goto’s may find a
place. The most common use is to abandon processing in some deeply
nested structure, such as breaking out of two loops at once. The break
statement cannot be used directly since it leaves only the innermost loop.
Thus:

Eore i MEesLs)
tor Lk b=l
if {(disaster) -
goto error;
)
error:

clean up the mess

This organization is handy if the error-handling code is non-trivial, and if

CHAPTER 3 CONTROL FLOW 63

errors can occur in several places. A label has the same form as a variable
name, and is followed by a colon. It can be attached to any statement in the
same function as the goto.

As another example, consider the problem of finding the first negative
element in a two-dimensional array. (Multi-dimensional arrays are discussed
in Chapter 5.) One possibility is

for (i = 0; 1 < N; i++)
for (j = 0; j < M; j++)
if (v[i1[3] < 0}
goto found;
/* didn’t find =/

found:
/% found one at pogition i, j »/

P

Code involving a goto can always be written without one, though
perhaps at the price of some repeated tests or an extra variable. For exam-
ple, the array search becomes

found = 0;
for (i = 0; 1 < N && !found; i++)
for (j = 0; j <« M && !found; j++)
found = v[i] [j] < O:
if {found)
F* it wag at i-1, j-1 =/

else L/
/* not found =/ .
/"‘.
/ Although we are not dogmatic about the matter, it does seem that goto
statements should be used sparingly, if at all.

b g 51 3 ':_I.‘ I:-. | ieus
"&al | g‘: :?N“_ 'I'“i 1 "“ ud S
-.' r ‘L\M H” -J‘ Y :. 11 tas LA ™ |||1' » ‘I‘|‘1.":

|;|-|_[| ulul 234
1 bl

i

T . \ fll
e e

' éﬂ " H?LJ LFJ.I:' F : "'1
P L'"L B J

e
J‘ jw?l'

CHAPTER 4: FUNCTIONS AND PROGRAM STRUCTURE

Functions break large computing tasks into smaller ones, and enable
people to build on what others have done instead of starting over from
scratch. Appropriate functions can often hide details of operation from parts
of the program that don’t need to know about them, thus clarifying the
whole, and easing the pain of making changes.

C has been designed to make functions efficient and easy to use; C pro-
grams generally consist of numerous small functions rather than a few big
ones. A program may teside on one or more source files in any convenient
way; the source files may be compiled separately and loaded together, along
with previously compiled functions from libraries. We will not go into that
process here, since the details vary according to the local system.

Most programmers are familiar with “‘library’’ functions for input and
output {getchar, putchar) and numerical computations (sin, cos,
sqrt). In this chapter we will show more about writing new functions.

4.1 Basics

To begin, let us design and write a program to print each line of its
input that contains a particular ‘“‘pattern’ or string of characters. (This is a
special case of the UNIX utility program grep.) For example, searching for
the pattern ““the™ in the set of lines

Now is the time

for all good

men o come to the aid
of their party.

will produce the output

Now 15 the time
men to come to the aid
of their party,

The basic structure of the job falls neatly into three pieces:

65

66 THE ¢ PROGRAMMING LANGUAGE CHAPTER 4

while (there’s another line)
if (the line conigins the patiern)
print it

Although it’s certainly possible to put the code for all of this in the main
routine, a better way is to use the natural structure to advantage by making
each part a separate function. Three small pieces are easier to deal with
than one big one, because irrelevant details can be buried in the functions,
and the chance of unwanted interactions minimized. And the pieces may
even be useful in their own right.

““While there’s another line” is getline, a function that we wrote in
Chapter ‘1, and “print i’ is printf, which someone has already provided
for us. This means we need only write a routine which decides if the line
contains an occurtence of the pattern. We can solve that problem by steal-
ing a design from PL/I: the function index (s, t) returns the position or
index in the string s where the string t begins, or -1 if s doesn’t contain t.
We use O rather than 1 as the starting position in s because C arrays begin
at position zero. When we later need more sophisticated pattern matching
we only have to replace index; the rest of the code can remain the same.

Given this much design, filling in the details of the program is straight-
forward. Here is the whole thing, so you can see how the pieces fit
together. For now, the pattern to be searched for is a literal string in the
argument of index, which is not the most general of mechanisms. We will
return shortly to a discussion of how to initialize character arrays, and in
Chapter 5 will show how to make the pattern a parameter that is set when
the program is run. This is also a new version of getline; you might find
it instructive to compare it to the one in Chapter 1.

#define MAXLINE 1000

main{) /« find all lines matching a pattern */
{
char line [MBXLINE];

while (getline(line, MAXLINE) > 0}
if {index(iine, "the") >= 0)
printf ("¥s", line);

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 67

=
getline(s, i;ﬁ) /% get line into s, return length =/
char s[],
int I&ﬁ,
{
Ints el i ;
i =0 T
while (—31im > 0 && (c=getchar()) 1= EOF && ¢ != r\n’)
sli++] = ¢; o e
if {c == '\n’)

"sli++] = ¢
s[i] = '\O‘;
return{i);

index{s, t) /+ return index of t in s, -1 if none */
char =[], t(];
{

int i, 3, k;

for (i = 0; s(i] != '\NO'; i++) |
for (j=i, k=0; tlk]l!='\0' && s5[jl==t[k]; J++, k++)

if (t[k] == *\Q’}
return(i};

}

returni-1);
'

Each function has the form

name {argument list, if any)
argimeni declarations, if any

{
declarations and statements, if any

H
As suggested, the various parts may be absent; a minimal function is
dummy (} {}

which does nothing. (A do-nothing function is sometimes useful as a place
holder during program development.} The function name may also be pre-
ceded by a type if the function returns something other than an integer
value; this is the topic of the next section,

A program 1is just a sel of mdw:dual function deﬁgltlom Communica-
tion between the functions s (i this “Case) by arguments and values
returned by the functions; it can alse be via extemgl variables. The func-

-
tionis can occur in any order on the sourcé file, and the source program can

Yl

68 THE € PROGRAMMING LANGUAGE CHAPTER 4

be split into multiple files, so long as no function is split.
The return statement is the mechanism for returning a value from the.-
called function to its caller. Any expression can follow return:

return {expression)

The calling function is free to ignore the returned value if it wishes. Furth-
ermote, there need be no expression after return; in that case, no value is
returned to the caller. Control also returns to the caller with no value when
execution ‘‘falls off the end’” of the function by reaching the closing right
brace. It is not illegal, but probably a sign of trouble, if a function returns a
value from ene place and no value from another. In any case, the “value™
of a function which does not return one is certain to be garbage. The C
verifier /int checks for such errors.

The mechanics of how to compile and load a C program which resides
on multiple source files vary from one system to the next. On the UNIX
system, for example, the ¢c command mentioned in Chapter 1 does the job.
Suppose that the three functions are on three files called main.c, getline.c,
and index.c. Then the command

cr main.e getfine.o index.c

compiles the three files, places the resulting relocatable object code in files
main.o, getline.o, and index.o, and loads them all into an executable fle
called a.out.

If there is an error, say in magin.c, that file can be recompiled by itself
and the resuit loaded with the previous object files, with the command

¢ main.c getfine. o index.o

ER] i Yy

The cc command uses the ““.¢” versus **.0’" naming convention to distin-
guish source files from object files.

Exercise 4-1. Write the lunction rindex (s, t), which returns the posi-
tion of the rightmost occurrence of t in s, or =1 if there is none. O

. T
4.2 Functions Returning Non-Integers

So far, none of our programs has confained any declaration of the type
of a fungtion. This is because by default a function is impciily declared by ™
‘its 2 appearance in an expression or statement, such as

while (getline(line, MAXLINE) > D}

If a name which has not been previously declared occurs in an expression,
and is followed by a left parenthesis, it is declared by context to be a func-
tion name. Furthermore, by default the function is assumed to return an
int. Since char promotes to int in expressions, there is no need to
declare functions that return char. These assumptions cover the majority

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 69

of cases, including all of our examples so far.

But what happens if a function must return some other type? Many
numerical functions like sqgrt, sin, and cos return double; other spe-
cialized functions return other types. To illustrate how to deal with this, let
us write and use the function atof (s), which converts the string s to ifs
double-precision floating point equivalent. atof is an extension of atoi,
which we wrote versions of in Chapters 2 and 3; it handles an optional sign
and decimal point, and the presence or absence of either integer part or frac-
tional part. (This is nor a high-quality input conversion routine; that would
take more space than we care to use.)

First, atof itself must declare the type of value it returns, since it is
not int. Because float is converted to double in expressions, there is
no point to saying that atof returns £loat; we might as well make use of
the extra precision and thus we declare it to return double. The type
name precedes the function name, like this:

double atof(s) /* convert string s to double %/
char s[];
{

double val, power;

int 1, sign;

for (i=0; s[i]==* * || elil=='\n’" || slil=="\t’; i++}
: /* skip white space =/

sign = 1;

if (s[i] == "+* 1| s[i] == -7} /% sign =/
sign = {s[i++]=='+') 2 1 : -1;

for (val = 0; s[i] >= '0*' && s[i] <= '9'; i++)
val = 10 % val + s[i] - *Q';

if (s[i] == r."}
i++;

for (power = 1; s[i] >= "0’ && s[i]l <= '97; i++) |
val = 10 % val + g[i] - '0’;

power *x= 10;
}
return(sign * val / power);
'

Second, and just as important, the cafling routine must state that atof
returns a non-int value. The declaration is shown in the following primi-
tive desk calculator (barely adequate for check-book balancing), which reads
one number per line, optionally preceded by a sign, and adds them all up,
printing the sum after each input.

70 THE C PROGRAMMING LANGUAGE CHAPTER 4

#define MAXLINE 100

main{) /% rudimentary desk calculator =/
1

double sum, atcf();

char line[MAXLINE];

sum = 0;
while (getline(line, MAXLINE) > 0)
printf ("\t%.2f\n", sum += atof(line));

’ T

The declaration
double sum, atcf();

says that sum is a double variable, and that atof is a function that returns
a double value. As a mnemonic, it suggests that sum and atof (...) are
both double-precision floating point values,

Unless atof is explicitly declared in both places, C assumes that it
returns an integer, and you'll get nonsense answers. If atof itself and the
call to it in main are typed inconsistently in the same source file, it will be
detected by the compiler. But if {(as is more likely) atof were compiled
separately, the mismaich would not be detected, atof would return a
double which main would treat as an int, and meaningless answers
would result. (linr catches this error.)

Given atof, we could in principle write atoi {convert a string to int)
in terms of it:

atoi (s} /* convert string s to integer */
char al[];

(
double atof();

returniatof(s));
1

Notice the structure of the declarations and the return statement. The
value of the expression in

return {expression }

is always converted to the type of the function before the return is taken.
Therefore, the value of atof, a double, is converted automatically to int
when it appears in a return, since the function atoi returns an int.
(The conversion of a floating point value to int truncates any fractional
part, as discussed in Chapter 2.)

CHAFTER 4 FUNCTIONS AND PROGRAM STRUCTURE 71

Exercise 4-2. Extend atof so it handles scientific notation of the form
123.45e-6

where a floating point number may be followed by e or E and an optionally
signed exponent. O

4.3 More on Function Arguments

In Chapter I we discussed the fact that function arguments are passed
by value, that is, the called function receives a private, temporary copy of
each argument, not its address. This means that the function cannot affect
the original argument in the calling function. Within a function, each argu-
ment is in effect a local variable initialized to the value with which the func-
tion was called. -

When an array name appears as an argument to a function, the location

_of the beginning of the array“is passed; elements are not copied. The func-}
tion can alter elements of the array by subscripting from this location. The

effect is that arrays are passed by reference. In Chapter 5 we will discussihe -

use of pointers to permit functions to affect non-arrays in calling functions.

By the way, there is no entirely satisfactory way to write a portable func-
tion that accepts a variable number of arguments, because there is no port-
able way for the called function to determine how many arguments were
actually passed 10 it in a given call. Thus, you can’t write a truly portable
function that will compute the maximum of an arbitrary number of argu-
ments, as will the MAX built-in functions of Fortran and PL/I.

It is generally safe to deal with a variable number of arguments if the
called function doesn’t use an argument which was not actually supplied,
and if the types are consistent. printf, the most common C function with
a variable number of arguments, uses information from the first argument
to determine how many other arguments are present and what their types
are. It fails badly if the caller does not supply enough arguments or if the
types are not what the first argument says. It is also non-portable and must
be modified for different environments.

Alternatively, if the arguments are of known types it is possible to mark
the end of the argument list in some agreed-upon way, such as a special
argument value {often zero) that stands for the end of the arguments,

72 THE ¢ PROGRAMMING LANGUAGE CHAPTER 4

4.4 External Variables

A C program consists of a set of external objects, which are either vari-
ables or functions. The adjective *‘external’” is used primarily in contrast to
““internal,”* which describes the arguments and automatic variables defined
inside functions. External variables are defined outside any function, and
are_thus potenually avallable to many functions. Functions themselves are
always external, because C_does not allow functions to be deﬁned inside
other functions. By default, external variables are also ~global, at a
references to such a variable by the same name (even from functions com-
piled separately) are references to the same thing. In this sense, external
variables are analogous to Fortran COMMON or PL/I EXTERNAL. We will
see later how to define external variables and functions that are not globally
available, but are instead visible only within & single source file.

Because exlernal variables are globally accessible, they provide an alier-
native to function arguments and returned values for communicating data
between functions. Any function may access an external variable by refer-
ring to it by name, if the name has been declared somehow.

If a large number of variables must be shared among functions, external
variables are more convenient and efficient than long argument lists. As
pointed out in Chapter 1, however, this reasoning should be applied with
some caution, for it can have a bad effect on program structure, and lead to
programs with many data connections between functions.

A second reason for using external variables concerns initialization. In
particular, exlernal arrays may be initialized, but automatic arrays may not.
We will treat initialization near the end of this chapter.

‘The third reason for using exiernal variables is their scope and lifetime.
Automatic_variables are internal to a function; they come into existence
when the routine is entered, and dlSﬁDDEdr when it is left. “External vari-="
ables, on the other hand; atc permaneni. They do Mol come and go, so they
retain values from one function invocation to the next. Thus if two func-
tions must share some data, yet neither calls the other, it is often most con-
venient if the shared data is kept in external variables rather than passed in
and out via arguments.

Let us examine this issue further with a larger example. The problem is
to write another caleculator program, better than the previous one. This one
permils +, —, *, /7, and = (to print the answer). Because it is somewhat
easier to implement, the calculator will use reverse Polish notation instead
of infix. (Reverse Polish is the scheme used by, for example, Hewlett-
Packard pocket calculators.) In reverse Polish notation, each operator fol-
lows its operands; an infix expression like

{1 —2) * (4 +5) =

is entered as

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 73

12 -45+ « =

Parentheses are not needed.

The implementation is quite simple. Each operand is pushed onto a
stack; when an operator arrives, the proper number of operands (two for
binary operators) are popped, the operator applied to them, and the result
pushed back onto the stack. In the example above, for instance, | and 2 are
pushed, then replaced by their difference, —1. Next, 4 and 5 are pushed
and then replaced by their sum, 9. The product of —1 and 9, which is —9,
replaces them on the stack. The = operator prints the top element without
removing it {so intermediate steps in a calculation can be checked).

The operations of pushing and popping a stack are trivial, but by the
time error detection and recovery are added, they are long enough that it is
better to put each in a separate function than to repeat the code throughout
the whole program. And there should be a separate function for fetching
the next input operator or operand. Thus the structure of the program is

while (next operator or operand is not end of file)
if {(aumber)
push ir
else if (operator)
pop operands
do operation
puish result
else
error

The main design decision that has not yet been discussed is where the
stack is, that is, what routines access it directly. One possibility is to keep it
in main, and pass the stack and the current stack positicn to the routines
that push and pop it. But main doesn't need to know about the variables
that control the stack; it should think only in terms of pushing and popping.
So we have decided to make the stack and its associated information exter-
nal variables accessible to the push and pop functions but not to main.

Translating this outline inte code is easy enough. The main program is
primarily a big switch on the type of operator or operand; this is perhaps a
more typical use of switch than the one shown in Chapter 3,

74 THE C PROGRAMMING LANGUAGE CHAPTER 4

#define MAXOP 20 /* max size of operand, operator */
$define NUMBER ’'0' /% signal that number found +/
$define TOOBIG '9' /* signal that string is too big »/

main() /+ reverse Polish desk calculator =/

{

int type;
char s[MAXOP];
double op2, atof(), popl(), push();

while [(type = getop{s, MAXOP)) != EOF}
switch (type) |

case NUMBER:
push(atof(s}};
break;
case ‘+°:
push{pop() + pop{());
break;
cage "%’
rushipop(}) * pop()};
break;
cage ’'—'":
op2 = pop{);
push{pop(} - op2);
break;
case /':
op2 = popl};
if (op2 1= 0.0)
push({pop() / op2);
else
printf("zero divisor poppedin");
break;
case '=';
printf ("\t%f\n", push{pop(}});
break;
case ‘c’:!
clear();
break;
case TOOBIG:
printf("%.20s ... is too long\n", s);
break;
default:
printf (Yunknown command %c\n", typel;
break;

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 75

#define MAXVAL 100 /x maximum depth of val stack /

int sp = 0; ~/+* stack pointer =/ .
double val[MAXVAL}; /# value stack x/
double push(f) /* push f onto value stack #*/
double £;
(
if (sp < MAXVAL)
return(vallsp++] = £);
else f
printf{verror: stack full\n"});
clear(};
return {0);

double{poﬁ{) /% pop top value from stack =/
{
if {sp > 0)
return{vall[--spl);
else |
printf ("error: stack empty\n");
clear();
returnil);

cleaf(] /% clear stack */
{

sp = 0;
]

The command ¢ clears the stack, with a function clear which is alse used
by push and pop in case of error. We’ll return to getop in a moment.

As discussed in Chapter 1, a variable is external if it is defined outside
the body of any functlon Thus the stack and stack pointer which must be
stisred” by push, pop, and clear are deﬁned outside of these three func-
tions. But ma:l.n itself does not refer 1o the slack or stack pomter — the
representanon is carefully hidden. Thus the code for the = operator must
use

rushipop());

to examine the top of the stack without disturbing it.

Notice also that because + and * are commutative operators, the order
in which the popped operands are combined is irrelevant, but for the — and
/ operators, the left and right operands must be distinguished.

76 THE C PROGRAMMING LANGUAGE CHAPTER 4
L%

Exercise 4-3. Given the basic framework, it's straightforward to extend the
calculator. Add the modulus (%) and unary minus operators. Add an
“‘erase’’ command which erases the top entry on the stack. Add commands
for handling variables. (Twenly-six single-letter variable names is easy.) 0

o 45 Scope Rules

The functions and external variables that make up a C program need not
all be compiled at the same time; the source text of the program may be
kept in several files, and previously compiled routines may be loaded from
libraries. The two questions of interest are

How are declarations written so that variables are properly declared dur-
tng compilation?

How are declarations set up so that all the pieces will be properly con-
nected when the program is loaded?

The seope of a name is the part of the program over which the name is
defined. For an automatic variable declared at the beginning of a function,
the scope is the function in which the name is declared, and variables of the
same name in different functions are unrelated. The same is true of the
arguments of the function.

The scope of an external variable lasts from the point at which it is
declared in a source file to the end of that file, For example, if val, sp,
push, pop, and clear are defined in one file, in the order shown above,
that is,

int sp = 0;
double wval [MAXVAL];

double push(f) [... }
double pop() { ... !}

clear() { ...]

then the variables val and sp may be used in push, pop and clear sim-
ply by naming them; no further declarations are needed.

On the other hand, if an external variable is to be referred to before it is
defined, or if it is defined in a different source file from the one where it is
being used, then an extern declaration is mandatory.

It is important to distinguish between the decfaration of an external vari-
able and its definition. A declaration announces the properties of a variable
(its type, size, etc.); a definition also causes storage to be allocated. If the
lines

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 77

int sp;
double val [MAXVAL];

appear outside of any function, they define the external variables sp and
wval, cause storage to be allocated, and also serve as the declaration for the
rest of that source file. On the other hand, the lines

extern int sp;
extern double valll;

deciare for the rest of the source file that sp is an int and that val is a
double array {whose size is determined elsewhere), but they do not create
the variables or allocate storage for them.

There must be only one definition of an external variable among all the
files that make up the source program; other files may contain extern
declarations to access it. (There may also be an extern declaration in the
file containing the definition.) Any initialization of an external variable goes
only with the definition. Array sizes must be specified with the definition,
but are optional with an extern declaration.

Although it is not a likely organization for this program, val and sp
could be defined and initialized in one file, and the functions push, pop
and clear defined in another. Then these definitions and declarations
would be necessary to tie them together:

In file 1:

int sp = 0; /* stack pointer */

double wal[MAXVAL); /x value stack =/
in file 2:

extern int sp;

extern double valll;

double push{f) (...)

double pop{) { ...]

clear() { ... |}

Because the extern declarations in fife 2 lie ahead of and cutside the three
functions, they apply to all; one set of declarations suffices for all of file 2.

For larger programs, the #include file inclusion facility discussed later
in this chapter allows one to keep only a single copy of the extern declara-
tions for the program and have that inserted in each source file as it is being
compiled. :

Let us now turn to the implementation of getop, the function that
fetches the next operator or operand. The basic task is easy: skip blanks,

78 THE C PROGRAMM!ING LANGUAGE CHAPTER 4 & .

tabs and newlines. If the next character is not a digit or a decimal point,
return it. Otherwise, collect a string of digits (that might include a decimal
point}, and return NUMBER, the signal that a number has been collected.

The routine is substantially complicated by an attempt to handle the
situation properly when an input number is too long. getop reads digits
{perhaps with an intervening decimal point) until it doesn't see any more,
but only stores the ones that fit, If there was no overflow, it returns
NUMBER and the string of digits. If the number was too long, however,
getop discards the rest of the input line so the user can simply retype the
line from the point of error; it returns TQOBIG as the overflow signal.

getop(s, lim) /% get next operator or operand =/

char s[];:
int lim;
{
int i, ¢;
while ({c = getch(})) == ' ¢ || ¢ == '\t’ || ¢ == '\n’)
H
if (e != *." && [c < "0’ || ¢ > 791))
returnic);
s(0] = ¢c;

for (i = 1; {c = getchar(})) »= "0’ && C <= '9'; i++)
if (i < lim}

. s[i] = c;
aEs e M==n2r] /* collect fraction */
if (i < lim)
s{i] = ¢;

for {i++; (c=getchar{)) »= '0’ && C <= '%'; i++)
if (1 < 1lim)
s8li] = ¢;
}
if (i < 1im) (/% namber iz ok %/
ungetchic);
s[i] = *\0’;
return (NUMBER]) ;
] else { /% it’'s too big; skip rest of line =/

while (¢ != '\n’ && ¢ != EQF)
¢ = getchar();
s5[1lim=-1] = *\0O7;

return (TOOBIG) ;

)

What are getch and ungetch? It is often the case that a program
reading input cannot determine that it has read enough until it has read too
much. One instance is collecting the characters that make up a number:

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 79

until the first non-digit is seen, the number is not complete. But then the
program has read one character too far, a character that it is not prepared
for.

The problem would be solved if it were possible to ‘‘un-read” the
unwanted character. Then, every time the program reads one character too
many, it could push it back on the input, so the rest of the code could
behave as if it had never been read. Fortunately, it’s easy to simulate un-
getting a character, by writing a pair of cooperating functions, getch
delivers the next input character to be considered; ungetch puts a charac-
ter back on the input, so that the next call to getch will return it again.

How they work together is simple. ungetch puts the pushed-back
characters into a shared buffer — a character array. getch reads from the
buffer if there is anything there, it calls getchar if the buffer is empty.
There must also be an index variable which records the position of the
current character iry'the buffer.

Since the buffer and the index are shared by getch and ungetch and
must retain their values between calls, they must be external to both rou-
tines. Thus we can write getch, ungetch, and their shared variables as:

#define BUFSIZE 100

char buf [BUFSIZE]; /* buffer for ungetch */
int bufp = 0; /% next free position in buf %/

getch () /% get a (possibly pushed back) character «/
{

return{ (bufp > 0! ? buf[-—-bufpl : getchar());
1

ungetch{c} /* push character back on input =/
int c;
{
if (bufp > BUFSIZE}
printf ("ungeteh: too many characters\n");
elge
buf(bufp++] = c;
i

We have used an array for the pushback, rather than a single character,
since the generality may come in handy later.

Exercise 4-4, Write a routine ungets (s) which will push back an entire
string onio the input. Should ungets know about buf and bufp, or
should it just use ungetch? O

Exercise 4-5. Suppose that there will never be more than one character of
pushback. Modify getch and ungetch accordingly. O

80 THE C PROGRAMMING LANGUAGE CHAPTER 4

Exercise 4-6. Our getch and ungetch do not handle a pushed-back EQF
in a portable way. Decide what their properties ought to be if an EOF is
pushed back, then implement your design. O

4.6 Static Variables

Static variables are a third class of storage, in addition to the extern
and automatic that we have already met.

static variables may be either internal or external. Internal static
variables are local to a particular function just as automatic variables are, but
unlike automatics, they remain in existence rather than coming and going
each time the function is activated. This means that internal static vari-
ables provide private, permanent storage in a function. Character strings
that appear within a function, such as the arguments of printf, are inter-
nal static.

An external static variable is known within the remainder of the
source file in which it is declared, but not in any other file, External
static thus provides a way to hide names like buf and bufp in the
getch-ungetch combination, which must be external so they can be
shared, yet which should not be visible to users of getch and ungetch, so
there is no possibility of conflict. If the two routines and the two variables
are compiled in one file, as

static char buf [BUFSIZE]; /» buffer for ungetch %/
gtatie int bufp = 0; /* next free position in buf */
getchi(} { ... }

ungetchi{c) { ...)

then no other routine will be able to access buf and bufp; in fact, they will
not conflict with the same names in other files of the same program.

Stalic storage, whether internal or external, is specified by prefixing the
normal declaration with the word static. The variable is external if it is
defined outside of any function, and internal if defined inside a function.

Normally, functions are external objects, their names are known glo-
bally. It is possible, however, for a function to be declared statie; this
makes its name unknown outside of the file in which it is declared.

In C, “static’ connoles not only permanence but also a degree of
what might be called “privacy.” Internal static objects are known only
inside one function; external static objects (variables or functions) are
known only within the source file in which they appear, and their names do
not interfere with variables or functions of the same name in ather files.

External static variables and functions provide a way to conceal data
objects and any internal routines that manipulate them so that other routines

L)

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 81

and data cannot conflict even inadvertently. For example, getch and
ungetch form a “module” for character input and pushback; buf and
bufp should be static so they are inaccessible from the outside. In the
same way, push, pop and clear form a module for stack manipulation;
val and sp should also be external static.

4.7 Register Variables

The fourth and final storage class is called register. A register
declaration advises the compiler that the variable in question will be heavily
used. When possible, register variables are placed in machine registers,
which may result in smaller and faster programs.

" The register declaration looks like

register int x;
register char c;

and so on: the int part may be omitied. register can only be applied to
automatic variables and to the formal parameters of a function. In this latter
case, the declaration looks like

fic, n)
register int ¢, n;
{
register int i;

'

In practice, there are some restrictions on register variables, reflecting
the realities of underlying hardware. Only a few variables in each function
may be kept in registers, and only certain types are allowed. The word
register is ignored for excess or disallowed declarations. And it is not
possible to take the address of a register variable (a topic to be covered in
Chapter 5). The specific restrictions vary from machine to machine; as an
example, on the PDP-11, only the first three register declarations in a func-
tion are effective, and the types must be int, char, or pointer.

4 8 Block Structure

C is not a block-structured language in the sense of PL/I or Algol, in
that functions may not be defined within other functions.

On the other hand, variables can be defined in a block-structured
fashion. Declarations of variables (including initializations) may follow the
left brace that introduces any compound statement, not just the one that
begins a function. Variables declared in this way supersede any identically
named variables in outer blocks, and remain in existence until the matching
right brace. For example, in

82 THE C PROGRAMMING LANGUAGE CHAPTER 4

if {(n > 0} {
int 1i; /% declare a new i #/
for (i = 0; 1 < n; i++)

}

the scope of the variable i is the ‘“‘true’” branch of the if: this i is unre-
lated to any other i in the program.
Block structure also applies to external variables. Given the declarations

int x;

£{)

{
‘double x;

}

then within the function £, occurrences of x refer to the internal double
variable; outside of £, they refer to the external integer. The same is true
of the names of formal parameters;

int =z;

flz)
double z;
{

}

Within the function £, z refers to the formal parameter, not the external.

4.9 Initialization

Initialization has been mentioned in passing many times so far, but
always peripherally to some other topic. This section summarizes some of
the rules, now that we have discussed the various storage classes.

In the absence of explicit initialization, exiernal and static variables are
guaranteed to be initialized fo zero; automatic and register variables have
undefined (i.e., garbage) values.

Simple variables (not arrays or structures) may be initialized when they
are declared, by following the name with an equals sign and a constant
expression.:

int x = 1;
char squote = r\'’:
long day = 60 »« 24; /+ minutes in a day =/

For external and static variables, the initialization is done once, conceptually
at compile time. For automatic and register variables, it is done each time

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 83

the function or block is entered.

For automatic and register variables, the initializer is not restricted to
being a constant: il may in fact be any valid expression involving previously
defined values, even function calls. For example, the initializations of the
binary search program in Chapter 3 could be written as

binary{x, v, n)

int =, vI[], n;

{
int low = 0;
int high = n - 1;
int mid;

]
instead of

binary{x, v, n)
int x, v[]l, n;
{
int low, high, mid;

low = 0;
high = n - 1;

}

In effect, initializations of automatic variables are just shorthand for assign-
ment statements. Which form to prefer is largely a matter of taste, We
have generally used explicit assignments, because initializers in declarations
are harder 1o see,

Automatic arrays may not be initialized. External and static arrays may
be initialized by following the declaration with a list of initializers enclosed
in braces and separated by commas. For example, the character counting
program of Chapter 1, which began

main () /* count digits, white space, others %/
{

int ¢, i, nwhite, nother;

int ndigit[10];

nwhite = nother = 0;
for (i = 0; 1 < 10; i++)
ndigit[i] = 0;

!

can he written instead as

84 THE ¢ PROGRAMMING LANGUAGE CHAPTER 4

int nwhite = 0;
int nother = 0;
int ndigit[(16) ={ 0, 0, O, O, O, 0, O, O, O, O);

main{) /% count digits, white space, others »/
{
int ¢, i;

}

These initializations are actually unnecessary since all are zero, but it’s good
form to make them explicit anyway. If there are fewer initializers than the
specified size, (he others will be zero. It is an error to have too many initial-
izers. Regrettably, there is no way to specify repetition of an initializer, nor
to initialize an element in the middle of an array without supplying all the
intervening values as well.

Character arrays are a special case of initialization; a string may be used
instead of the braces and commas notation:

char pattern[] = "the";
This is a shorthand for the longer but equivalent
char pattern[] = { ‘t*, *h’, ‘e, *\0" };

When the size of an array of any iype is omitted, the compiler will compute
the length by counting the initializers. In this specific case, the size is 4
{three characters plus the terminating \0}.

4.10 Recursion

C functions may be used recursively; that is, a function may call jtself
either directly or indirectly. One traditional example involves printing a
number as a character string. As we menlioned before, the digits are gen-
erated in the wrong order: low-order digits are available before high-order
digits, but they have to be printed the other way around.

There are two solutions to this problem. One is to store the digits in an
array as they are generated, then print them in the reverse order, as we did
in Chapter 3 with itoa. The first version of printd follows this pattern.

CHAPTER 4 FUNCTIONS AND FPROGRAM STRUCTURE 85

printdi{n) /* print n in decimal */
int n;
{

char s([10];

int i;

if (n < 0} {
putchar{‘-r);
n = -n;

sli++] =n % 10 + '0’; /* get next char */
} while {{n /= 10} > 0); /» discard it =/
while (—i == 0)
putchar(s[i]);
]

The alternative is a recursive solution, in which each call of printd
first calls itself to cope with any leading digits, then prints the trailing digit.

printd(n) /* print n in decimal {recursive) =/
int n;
-

int i;

if (n < 0} {
putchar{’-*};
n = -n;

H

if ({i = n/s10) != 0}
printd(i);

putchar(n % 10 + *0*);

)

When a function calls itself recursively, each invocation gets a fresh set of
all the aniomatic variables, quite independent of the previous set. Thus in
printd(123) the first printd has n = 123. It passes 12 to a second
printd, then prints 3 when that one returns. In the same way, the second
printd passes 1 to a third (which prints it}, then prints 2.

Recursion generally provides no saving in storage, since somewhere a
stack of the values being processed has to be maintained. Nor will it be fas-
ter. But recursive code is more compact, and often much easier to write and
understand. Recursion is especially convenient for recursively defined data
structures like trees; we will see a nice example in Chapter 6.

Exercise 4-7. Adapt the ideas of printd to write a recursive version of
itoa; that is, convert an integer into a string with a recursive routine. 0J

86 THE C FROGRAMMING LANGUAGE CHAFTER 4

Exercise 4-8. Write a recursive version of the function reverse(s),
which reverses the string s. O

4.11 The C Preprocessor

C provides certain language extensions by means of a simple macro
preprocessor, The gdefine capability which we have used is the most
common of these extensions; another is the ability to include the contents
of other files during compilation.

File Inclusion

To facilitate handling collections of #define’s and declarations (among
other things) C provides a fle inclusion feature. Any line that looks like

#include “filename"

is replaced by the contents of the file filename. (The quotes are mandatory.)
Often a line or two of this form appears at the beginning of each source file,
to include common #define statements and extern declarations for glo-
bal variables. #include’s may be nesled.

#include is the preferred way to tie the declarations together for a
large program. It guarantees that all the source files will be supplied with
the same definitions and variable declarations, and thus eliminates a particu-
larly nasty kind of bug. Of course, when an included file is changed, all files
that depend on it must be recompiled.

Macro Substitution
A definition of the form
#define YES 1

calls for a macro substitution of the simplest kind — replacing a name by a
string of characters. Names in #define have the same form as C
identifiers; the replacement text is arbitrary. Normally the replacement text
is the rest of the line; a long definition may be continued by placing a \ at
the end of the line to be continued. The “‘scope” of a name defined with
#define is from its point of definition to the end of the source file.
Names may be redefined, and a definition may usc previous definitions.
Substitutions do not take place within quoted strings, so, for example, if
YES is a defined name, there would be no substitution in
printf {"YES").

Since implementation of #define is a macro prepass, not part of the
compiler proper, there are very few grammatical restrictions on what can be
defined. For example, Algol fans can say

CHAPTER 4 FUNCTIONS AND PROGRAM STRUCTURE 87

#define then
#define begin |
#define end i

and then write

if {i > 0} then
begin
a=1;
b=2
end

It is also possible to define macros with arguments, so the replacement
text depends on the way the macro is called. As an example, define a macro
called max like this:

s#define max(h, B} ({A) > (B) ? (A} : (B))
Now the line

x = max(p+tg, r+s);
will be replaced by the line

x = {(p+tq) > (x+s) ? (p+q) : (x+s));

This provides a ‘‘maximum function” that expands into in-line code rather
than a function call. So long as the arguments are treated consistently, this
macro will serve for any data type; there is no need for different kinds of
max for different data types, as there would be with functions.

Of course, if you examine the expansion of max above, you will notice
some pitfalls. The expressions are evaluated twice; this is bad if they
involve side effects like function calls and increment operators. Some care
has to be taken with parentheses to make sure the order of evaluation is
preserved. {Consider the macro

tdefine sguare(x) x * X

when invoked as square (z+1).) There are even some purely lexical prob-
lems: there can be no space between the macro name and the left
parenthesis that introduces its argument list.

Nonetheless, macros are quile valuable. One practical example is Lhe
standard 1/0 library to be described in Chapter 7, in which getchar and
putchar are defined as macros (obviously putchar needs an argument),
thus avoiding the overhead of a function call per character processed.

Other capabilities of the macro processor are described in Appendix A.

Exercise 4-9. Define a macro swap(x, y) which interchanges its two int
arguments. (Block structure will help.) O

=R - 1
.. _ o ==
- -
L5 -
JLI. | I
. e
X 5
"
¥r
"
- [
L " -
™
- »
i L <
- -
- b]
- - o= - _
ey N B
" ¥
.]
] N . TN -
- 1 e
PR -
= T
i L
. e s
= AT o - = 5
"R || 3

AR Sy

- o el "—-‘_
et ||.r| .V'h
e =ury m

CHAPTER 5: POINTERS AND ARRAYS

A pointer is a yariable that contains 5 the address of @ variable.
Pointers are very much used in C; parily because They are sometimes the
only way to express a computation, and partly because they usually lead to
more compact and efficient code than can be obtained in other ways.

Pointers have been lumped with the goto statement as a marvelous
way to create impossible-to-understand programs. This is certainly true
when they are used carelessly, and it is easy to create pointers that point
somewhere unexpected. With discipline, however, pointers can also be used
to achieve clarity and simplicity. This is the aspect that we will try to illus-
trate.

5.1 Pointers and Addresses

Since a pointer contains the address of an object, it is possible to access
the object “‘indirectly”” through the pointer. Suppose that x is a variable,
say an int, and that px is a pointer, created in some as yet unspecified way.
The unary operator & gives the address of an object, so the statement

px = &xX;
lhe address of x to the variable px; px is now said to ‘‘point t0” x.
€

& operator can-be applied only to variables and array elements; con-
structs like & {x+1) and &3 are illegal. It is also illegal to take the address
of a_register varablg 7

The unary operator * treats its operand as the address of the ultimate
target, and accesses that address 1o fetch the contents. Thus if y is also an
it s _

y = *px;
assigns 10 y the_cb}ltenlé of whatever px points to. So the sequence
N .
PR = &x;
Y-
assigns the same value to v as does
89

90 THE C PROGRAMMING LANGUAGE CHAPTER 5

¥ = x;
It is also necessary to declare the variables that participate in all of this:

int x, ¥i
int *px;

The declaration of x and y is what we’ve seen all along. The declaration of
the pointer px is new. _

P I

int *px;

e
is intended as a mnemonic, it says that the combination *px is an int, that
is, if px occurs in the context *px, it is equivalent to a variable of type
int. In effect, the syntax of the declaration for a variable mimics the syn-
tax of expressions in which the variable might appear. This reasoning is
useful in all cases involving complicated declarations. For example,

double atof(), #dp;

says that in an expression atof ()} and *dp have values of type double.
You should also note the implication in the declaration that a pointer is
constrained to point to a particular kind of object.
Pointers can occur in expressions. For example, if px points to the
integer x, then *px can occur in any context where x could.

vy = xpx + 1
sets y to 1 more than x;
printf {"%d\n", #px)
prints the current value of x; and
d = sqgrt(({double} #*px)

produces in d the square root of x, which is coerced into a double before
being passed to sqrt. (See Chapter 2.}
In expressions like

v = *px + 1

the unary operalors # and & bind more tightly than arithmetic operators, so
this expression lakes whatever px points at, adds 1, and assigns it to y. We
will return shortly to what

v = *{px + 1}

might mean. T,
Pointer references can also occur on the left side of assignments. If px
points to x, then

*px = 0

CHAPTER 5 POINTERS AND ARRAYS 91

sets x to zero, and
wpx = 1

increments it, as does
(#+pX) ++

The parentheses are necessary in this last example; without them, the
expression would increment px instead of what it points to, because unary
operators like * and ++ are evaluated right to left.

Finally, since pointers are variables, they can be manipulated as other
variables can. 1f py is another pointer to int, then

Py = px

copies the contents of px into py, thus making py point to whatever px
points to.

5.2 Pointers and Function Arguments

Since C passes arguments to funct}nns by “‘call by value,” there is no
direct way for the called function 1o alter a variabie in the calling function.
What do you do if you really have to change an ordinary argument? For
example, a sorting routine might exchange two out-of-order elements with a
function called swap. [t is not enough to write

swap{a, b);
where the swap function is defined as

swapi{x, y} /% WRONG =/
int x, ¥v;
{

int temp;

temp = x;
=¥
Yy = temp;
)

Because of call by value, swap can't affect the arguments a and b in the
routine that called it.

Fortunately, there is a way to obtain the desired effect. The calling pro-
gram passes pointers 1o the values to be changed:

-

swap(&a, &b);
-5

Since the operator & gives the address of a variable, sa is a pointer {0 a. In
swap itself, the arguments are declared to be pointers, and the actual
operands are accessed thirough them.

92 THE C PROGRAMMING LANGUAGE CHAPTER 5

T swap (px, py) /* interchange *px and *py */
L.int =px, *py;
(
int temp;

temp = *pX;

*pPX = *py;

*py = temp;
t

One common use of pointer arguments is in functions that must return
more than a single value. (You might say that swap returns two valugs, the
new ve}luesrbf its arguments.) As an example, consider a function getint
which performs free-format input conversion by breaking a stream of char-
acters into integer values, one integer per call. getint has to return the
value it found, or an end of file signal when there is no more input, These
values have w0 be returned as separale objects, for no matter what value is
used for EOF, that could also be the value of an input integer.

One solution, which is based on the input function scanf that we will
describe in Chapter 7, is to have getint return BOF as its function value if
it found end of file; any other returned value signals a normal integer. The
numeric value of the integer it found is returned through an argument,
which must be a pointer to an integer. This organization separates end of
file status from numeric values.

The following loop fills an array with integers by calls to getint:

int n, v, array[SIZE];

for {n = J; n < SIZE && getint{&v) != EOF; n++)
array[n] = v;

Each call sets v to the next integer found in the input. Notice that it is
essential to write &v instead of v as the argument of gétint. Using plain
v is likely to cause an addressing error, since getint believes it has been
handed a valid pointer.

getint itself is an obvious modification of the atci we wrote carlier:

CHAPTER 5 POINTERS AND ARRAYS 93

getint (pn) /# get next integer from input */
int #pn;
{

int ¢, sign;

while ({c = getch()) == ' ' || ¢ == '\n’ || ¢ == ’'\t'}
H /* skip white space »/

sign = 1;

if (c == '+ Il ¢ == "=} | /% record sign %/
sign = (cm='+') ? 1 : -1;

c = getch();
}
for (#pn = 0; ¢ >="'0" && © <= '9'; ¢ = getch(})
xpn = 10 % «pn + ¢ — ‘0’
*pn *= sign;
if (¢ != EOF)
ungetchiec) ;
return{c);

)

Throughout getint, *pn is used as an ordinary int variable. We have
also used getch and ungetch (described in Chapter 4) so the one exira
character that must be read can be pushed back onto the input.

Exercise 5-1. Write getfloat, the floating point analog of getint.
What type does getfloat return as its function value? O

5.3 Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong
enough that poiniers and arrays really should be treated simultaneously.
Any operation which can be achieved by array subscripting can alsc be done
with pointers. The' pointer version will in general be faster but, at least 1o
the uninitiated, somewhat harder to grasp immediately.

The declaration

int al10]

defines an array a of size 10, that is a block of 10 consecutive objects named
al0], al[1]1, ..., a[9). The notation a[i] means the element of the
array i positions from the beginning. If pa is a pointer to an integer,
declared as

int *pa
then the assignment
pa = &al0]

sets pa to point to the zeroth element of a; that is, pa coniains the address

94 THE C PROGRAMMING LANGUAGE CHAPTER 5

of a[0]. Now the assignment
x = *kpa

will copy the contents of a [0] into x.

If pa points to a particular element of an array a, then by definition
pa+1 points to the next element, and in general pa—i poinis i elements
before pa, and pa+i points i elements after. Thus, if pa points to a[01],

*(pa+l)

refers to the contents of a[1], pa+i is the address of a[i], and * (pa+i)
is the contents of a [i].

These remarks are true regardless of the type of the variables in the
array a. The definition of ‘‘adding 1 to a peinter,”’ and by extension, all
pointer arithmetic, is that the increment |s scaled by the size in storage of
the obJect that 3 pcnnted to. Thus in pa+i, i is mu @lxed by the : size of
the objects that p 1ai pa pomts to before being added to pa.

The correspondence between 1ndexing and pointer arithmetic is evi-
dently very close. In fact, a reference to an array is converted by the com-
piler to a pointer to the beginning of the array. The effect is that an arr
name s a pointer expression. This has quite a few useful impmazld

"Since the vafvw—uf 47 dray isa synonym for the location of the zeroth ele-
ment, the assignment e

pa = &al0]

can also be written as

\ pa = a

Rather more surprising, at least at first sight, is the fact that 2 refergnce
to a[i] can also be written as *(a+i). In evaluating al[i], C converts it
to » (a+i) immediately; the two forms are completely equivalent. Applying
the operator & to both parts of this equivalence, it follows that ‘&afil and
a+i are also identical: a+1i is thewmemma As
the other side of this comn,.if pa is a Roinjer, expressions may use it with a
subscript: pa[i] is identical To *{pa+i), In sho—rT’any ray and index

expression can be written as a poinier an offset, and vice versa, even in the
same statement. T T

There is one difference between an array name and a pointer that must

be kept in mind. A pointer is a variable, so pa=a and pa++ are sensible
! operations. But an array name is a constant, not a variable: constructions
like a=pa or a++ or p=&a are illegal.

When an array name is passed to a function, what is passed s the loca-
tion of the Pegmnifig of the array. Within the called function, this argument
s a variable, just like any other variable, and so an array namﬁgg@?j{
Mter that is, a variable contammg an Eame can use this

e T e S

o

CHAPTER 5 POINTERS AND ARRAYS 95

fact to write a new version of strlen, which computes the length of a
string.

fﬁ 8) /% return length of string s »/
char%,

int n;

for (n = 0;(:i)1= '\0’;(;;:)

n++;
returnin);

)

Incrementing s is perfectly legal since it is a pointer variable; s++ has no
“effect on the character string in the function that cafl’El/_\”rlen but merely
increments strlen’s prlvate - copy. of the address.
As formal parametets in a function definition,
\ and

are exactly equivalent; which one should be written is determined largely by
how expressions will be written in the funclion When an array name is

char s([];

char *s;

%ﬁandeﬂ elther an array or a pointer, and mampulate it accordingly. Tt~
can even usé boih kmds of operatlons if it seems appropriate and clear.
It is possible to pass part of an array (o a function, by passing a pointer
to the beginning of the subarray. For example, if a is an array,
e e et
£(sal2])

£(a+2)
both pass to the function f @Eédwfinreﬁglg_ element K[zﬂl because &al[2]
and a+2 are both mte\/ expressions-that refer to the third element of a.
Within £, the argument declarationcan read

flarxr}
int arr[];

and

or

96 THE C PROGRAMMING LANGUAGE CHAPTER 5

flarr)
int =*xarr;
(

}

So as far as £ is concerned, the fact that the argument really refers to part of
a larger array is of no consequence. .

5.4 Address Arithmetic

If p is a pointer, then p++ increments p to point to the next element of
whatever kind of object p points to, and p+=i increments p to point i ele-
merts beyond where it currently does. These and similar constructions are
the simplest and most common forms of pointer or address arithmelic.

C is consistent and regular in its approach to address arithmetic; its
integration of pointers, arrays and address arithmetic is one of the major
strengths of the language. Let us illustrate some of its properties by writing
a rudimentary storage allocator (but useful in spite of its simplicity). There
are two routines: alloc (n) returns a pointer p to n consecutive characler
positions, which can be used by the caller of alloc for storing characters;
free (p) releases the storage thus acquired so it can be later re-used. The
routines are ‘‘rudimentary’” because the calls to free must be made in the
opposite order to the calls made on alloc. That is, the storage managed
by alloc and free is a stack, or last-in, first-out list. The standard C
library provides analogous functions which have no such restrictions, and in
Chapter 8 we will show improved versions as well. In the meantime, how-
ever, many applications really only need a trivial alloc to dispense little
pieces of storage of unpredictable sizes at unpredictable times. .

The simplest implementation is to have alloc hand out pieces of a
large character array which we will call allocbuf. This array is priyate to
il/lcg/an\ﬂdfpee. Since they deal in pointers, not arfay Iridices, o ‘other”
routiné neéd know the name of the array, which can be declared external
static, that is, local to the source file containing alloc and free, and
invisible outside it. In practical implementations, the array may well not
even have a name; it might instead be obtained by asking the operating sys-
tem for a pointer to some unnamed block of storage.

The other information needed is how much of allocbuf has been
used. We use a pointer to the next free element, called allocp. When
alloc is asked for n characters, it checks to see if there is enough room
left in alloebuf. If so, alloe returns the current value of allocp (ie.,
the beginning of the free block), then increments it by n to point to the
next free area. free{p) merely sets alloep to p if p is inside
allochuf.

CHAPTER 5 POINTERS AND ARRAYS 97

#define NULL O /* pointer value for error report /
fdefine ALLOCSIZE 1000 /# size of available space +/

statlc\char allocbuf[ALLOCSIZE /* storage for alloc =/
stdtic char *allocp allocgg /% next free position %/
char #alloc(n) /% return peointer to n characters &/
“int n; "7
{
if {allocp + n <= allocbuf + ALLOCSIZE) | /% fits %/
allocp += n;
returni{allocp - n); /* old p =/

] else /* not enough room %/
return (NULL) ; -
) '}
('free(pig /% free storage pointed to by p */
\¢har *p;

= ,
if (p >= allocbuf && p < alleocbuf + ALLOCSIZE)
allocp = p; -
)

Some explanations. In general a pointer can be initialized just as any
other variable can, though normally the only meaningful values are NULL
(discussed below) or an expression involving addresses of previously defined

~ —— T
data of -appropriate type. The declaration

static char wxallocp = allochuf;

defines allocp to be a character pointer and inmitializes it to point to
allocbuf, which is the next free position when the program starts. This
could have also been writteir— """

static char *allocp = @kllocbuf[ﬁ];

since the array name is the address of _the zeroth element; use whichever is
W
more natural.

The test
if {allocp + n <= allochuf + ALLOCSIZE)

checks if there’s enough room to satisfy a request for n characters. If there
is, the new value of allocp would be at most one beyond the end of
allocbuf. If the request can be satisfied, alloc returns a normal pointer
(notice the declaration of the TLTﬁEtlo“‘rtself) If-not, aIloc must return
some 51gna] that no space is s left. C. guarantees that no pointer that validly
points at data will contain zero, so a return value of zero can be used to sig-

nal an abnormal event, in this case, no space. We write NULL instead of

08 THE C PROGRAMMING LANGUAGE CHAPTER 5

zero, however, to indicate more clearly that this is a special valuc for a

zero isa specnal case
“Tests Tike ™~

if (allocp + n <= allocbuf + ALLOCSIZE)
and

if {p »= allocbuf && p < allocbuf + ALLOCSIZE)

compared under certain circumstances. If p and g point to members of
same array, then relations like <, >=, ete., work properly.

show several important facets of pointer arithmetic, First, pomterLgy}:e

P <4

is true, for example, if p points to an earlier member of the array than does
q. The relations == and != also work. Any pointer can-be meaningfully
_compared for equality or inequality with NULL. But all bets are off if you do
anthmetlc or comparisons with pointers poxMﬁerent arrays. If
you’re lucky, you'll get obvious monsense on all machines ~—1If you're
unlucky, your cede will work on one machine but collapse mysteriously on
another.,

Second, we have already observed that a pointer and an integer may be
added or subtracted. The construction

p+n

means the n-th object beyond the one p currenily points to. This is true
regardless of the kind of object p is declared to point at; the compiler scales
n according to the size of the objects p points to, which is determined by
the declaration of p. For example, on the PDP-11, the scale factors are 1
for char, 2 for int and short, 4 for long and float, and 8 for
double.

Pointer subtraction is also valid: if p and-q point to members of the
same array, p —gﬁlS the fgg_n}ber of elements t@\ and g_.vThis fact can
be used to write yet another version of strlen: -

strlen(s) /* veturn length of string s #/
char xs; CLE O
(e [1T 7Ty,

char *p = 55 ;ﬁ X A

while {(#p != "\0'}

return{*-
1

In its declaration, p is initialized to s, that is, to point to the first character.

CHAPTER § POINTERS AND ARRAYS 99

In the while loop, each character in turn is examined until the \0 at the
end is seen. Since \0 is zero, and since while tests only whether the
expression is zero, it is possible to omit the explicit test, and such loops are
often written as

while (*p)
pH+;

Because p points to characters, p++ advances p to the next character
each time, and p—s gives the number of characters advanced over, that is,
the string 1engfh/jl;§171t£eimthmet1c is consistent: if we had been “dealing—
with fIoat’s, which occupy more storage than char’s, and if p were a
pointer to £loat, p++ would advance to the next float. Thus we could
write another version of alloc which maintaing, let us say, float’s
instead of char’s, merely by changing char to float throughout alloc
and free. All the pointer manipulations automatically take into account
the size of the object pointed to, so nothing else has to be altered.

Other than the operations mentioned here {adding or subtracting a
pointer and an integer; subtracting or comparing two pointers), all other
pointer arithmetic is illegal. It is not permitted to add two pointers, or to
multiply or divide or shift or magk them, or to add float or double to
them.

5.5 Character Pointers and Functions
A string constant, written as
"I am a string" -

is an array of characters. In the internal representation, the compiler ter-
minates the array with the character \0 so that programs can find the end.
The length in storage is thus one more than the number of characters
between the double quotes.

Perhaps the most common occurrence of string constants is as argu-
ments to functions, as in

printf ("hello, worldin");

When a character string like this appears in a program, access 1o it is

h h a character pointer; what printf receives is a pointer to the char-
T N e e e —

acter array.
racter arrays of course need not be function arguments. If
message is declared as

char »message;

then the statement

100 THE C PROGRAMMING LANGUAGE CHAPTER §

message = 'now is the time";

assigns to message a _pointer to the actual characters. TW
copy; only pointers are involved. C does not provide any operators for pro-
cessing an entire string of characters as a unit.

We will illustrate more aspects of pointers and arrays by studying two
useful functions from the standard [/O library te be discussed in Chapter 7.

The first function is strepy (s, t}, which copies the string t to the
string 5. The arguments are written in this order by analogy to assignment,
where one would say

s =t
to assign t to s. The array version is first:

strepyis, t) /% copy t to 5 */
char s[], tI[);
{

int i;

i=90;
while ((s[i] = t[4i]} != '\D’)
i++;

)
For contrast, here is a version of strepy with pointers.

strepy (s, t) /* copy t to s; pointer version 1 »/
char *s, »t;
(
while ({xs = »t) != '\D’) |
S++;
t+4;

}

Because W@Wxstrcpy can use s and t in any
way it pledses] Here they are coniveniently initialized pointers, which are
marched along the arrays a character at a time, until the \0 which ter-
minates t has been copied to s,

In practice, strepy would not be written as we showed it above. A

second possibility might be

strepyis, t) /* copy t to s; pointer version 2 %/
char *s5, #*t;
{

while ({*xs++ = *t++) I= '\D’)

*
r

CHAPTER 5 POINTERS AND ARRAYS 101

This moves the increment of s and t into the test part. The value of *t++
is the character that t pointed to before t was incremented; the postfix ++
doesn’t change t until after this character has been fetched. In the same
way, the character is stored into the old s position before s is incremented.
This character is also the value that is compared against \0 to control the
logp. The net effect is that characj.er& are copled from t to s up to and_
including the terminating \0.

As the abbreviafion, again observe that a comparison against \ ¢
is redundant, so the function is often written as

strcpy (s, t} /% copy t to s; pointer version 3 &/

char s, »t;

{

while (#*s++ = wt++}

h
Although this may secem cryptic at first sight, the notational convenience is
considerable, and the idiom should be mastered, if for no other reason than
that you will see it frequently in C programs.

The second routine is stremp (s, t), which compares the character
strings s and t, and returns negative, zero or positive according as s is lexi-
cographically less lhan eqim/lto or greater than t.—The value returned is
obtained by sublracggg_t_h_e characters at. the ﬁrst posmon where s and t

disagree. A e
e
stremp(s, t} /% return <0 if s<t, 0 if s==t, >0 if s>t =/
char s[], tI[1;
{
int i;
iv= 0;
while (s[i] == €[i]}

if (s[i++] == 7\0’)
return(0);
return(s[i]l - t[i]);

]

The pointer version of stremp:

102 THE C PRCGRAMMING LANGUAGE CHAPTER §

stremp{s, t) /* return <0 if s<t, 0 if s==t, >0 if s>t */
char *s, *t;
{
for { ; %5 == %t; s5++, €++)
if (*s == '\0")
return(0);
return{xs — *t);
|

Since ++ and —- are either prefix ot postfix operators, other combina-
tions of + and ++ and —— occur, although less frequently. For example,

*+4D

increments p before felching the character that p points to;
——— T

*—-p
decrements p first.

Exercise 5-2. Write a pointer version of the function strcat which we
showed in Chapter 2: strcat(s, t) copies the string t to the end of s.
O

Exercise 5-3. Write a macro for strepy, O

Exercise 5-4. Rewrite appropriate programs from earlier chapters and exer-
cises with pointers instead of array indexing. Good possibilities include
getline (Chapters 1 and 4), atodi, itoa, and their variants (Chapters 2,
3, and 4), reverse (Chapter 3), and index and getop (Chapter 4). O

5.6 Pointers are not Integers

You may notice in older C programs a rather cavalier attitude toward
copying pointers. [1 has generally been true that on most machines a pointer
may be assigned to an integer and back again without changing it; no scaling
or conversion takes place, and no bits are tost. Regrettably, this has led 1o
the taking of liberties with routines that return peinters which are then
merely passed to other routines — the requisite pointer declarations are
oflen left out. For example, consider the function strsave (s), which
copies the string s into a safe place, obtained by a call on allog, and
returns a pointer to it. Properly, this should be wriften as

-

CHAPTER 3 BOINTERS AND ARRAYS 103

char *strgave(s) /* save string 5 somewhere =/
char #*g;
{

char wp, #alloc{);

if ((p = alloc{strlen(s)+1)} != NULL)
strcpy(p, s);
returnip);

]
In practice, there would be a strong tendency to omit declarations:

strsave (s) /% save string s somewhere %/
{

char #p;

if {{p = alloc(strlen(s)i+1)) |= NULL)

strepy(p, s};
return(p};

1

This will work on many machines, since the default type for functions and
arguments is int, and int and pointer can usuiﬁr Eé safely assigned back —
Weless this kind of code is mherently tisKy, for it depends™
on details of implementation and machine architecture which may not hold
for the particular compiler you use. It’s wiser to be complete in all declara-
tions. (The program fint will warn of such constructions, in case they creep

?Mdvcrtently.)
\'\

(| Sl I;Multl-Dlmensional Arrays
L

—C provides for rectangular multi-dimensional arrays, although in practice
they tend to be much less used than arrays of pointers. In this section, we
will show some of their properties.

Consider the problem of date conversion, from day of the month to day
of the year and vice versa. For example, March 1 is the 60th day of a non-
leap year, and the 61st day of a leap year. Let us define two functions to do
the conversions: day_of_year converts the month and day into the day of
the year, and month_day converts the day of the year into the month and
day. Since this latter functlon returns two valu.es, the month and day argu-

i

mcnls will bé pointers:— B
T N e——

menth_day (1977, &0, &m, &4)

setsmto 3 and d to 1 (March 1st).

These functions both need the same information, a table of the number
of days in each month (‘‘thirty days hath September ...""). Since the
number of days per month differs for leap years and non-leap years, it’s

104 THE ¢ PROGRAMMING LANGUAGE CHAPTER 5

¢asier to separate them into two rows of a two-dimensional array than try to
keep track of what happens to February during computation. The array and
the functiens for performing the transformations are as follows:

static int day_tab[2] [13] ={
{o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{fo, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
i

day_of_year (year, month, day) /% set day of year =/
int year, month, day; /% from month & day */

{

int i, leap;

lea year%4 == 0 && year%100 1= 0 (| year%d00 == 0Q;

for = nibn\'h e Ee i Rl e
day += day_tab[leap] [i];

return (day) ;

month_day (year, yearday, pmonth, pday) /+ set month, day #/
int year, yearday, #pmonth, =»pday; /* from day of year =/
(

int i, leap;

leap = year%d == 0 && year®100 1= 0 || year%400 == 0;
for (i = 1; yearday » day_tab([leap] [1]; i++)
yearday -= day_tabl[leap] [i]l;
*pmonth = i
*pday = yearday;
]

The array day_tab has to be external to both day_of_year and
month_day, so they can both use il.

day_tab is the first iwo-dimensional array we have dealt with. In C,
by definition a two- -dimensional array is s really a one- dlmensmnal array, each
of whose elements is an array. Hence subscnpts are written as

I T Ry R
rather than
day_tabli, j]

as in most languages. Other than this, a two-dimensional array can be
treated in much the same way as in other languages. Elements aré sto%d by
rows, that is, the rightmost subscript varies fastest as elements are accessed
in storage order.

CHAPTER 35 POINTERS AND ARRAYS 105

An array is initialized by a list of initializers in braces; each row of a
two-dimensional array is initialized by a corresponding sub-list. We started
the array day_tab with a column of zero so that month numbers can run
from the natural 1 to 12 instead of 0 to 11. Siqgw,&am
here this is easier-than adjusting-indices,

“If & two-dimensional array is to be passed to_a function, the > argument
declaration in the function must include the w/dlm;@_/u,_the row
dimension is irFelévant; since what is “passed is, as before, a pointer. [n this
particular case, it is a pointer to objects which are arrays of 13 int’s. Thus
if the array day_tab is to be passed to a function £, the declaration of £
would be

f (day_tab)
int day_tab[2][13];
{

'

The argument declaration in £ could also be
int day_ tabl[]1[13];

since the number of rows.is irrelevant, or it could be
int {wday_tab) [13];

which says that the argument is a pointer to an array of 13 integers. The
parentheses are necessary since brackets [] have higher precedence than *:
without parentheses, the declaration

int xday_tab(13];

is an array of 13 pointers to integers, as we shall see in the next section.

5.8 Pointer Arrays; Pointers to Pointers

Since pointers are variables themselves, you might expect that there
would be uses for arrays of pointers. This is indeed the case. Let us illus-
trate by writing a program that will sort a set of text lines into alphabefic
order, a stripped-down version of the UNIX utility sort.

In Chapter 3 we pres a Shell sort function that would sort an array
of integers. The same flgoritho will work, except that now we have to deal
with lines of text, which afe of different lenglhs and which, unlike integers,
can’t an't be_compared or moved in i single operatlon We need a data
representation that will cope em convenieiifly with variable-length
text lines,

This is where the array of pointers enters. If the lines to be sorted are
stored end-to-end in one long character array {maintained by alloc,
perhaps), then each line can be accessed by a pointer to its first character.

106 THE € PROGRAMMING LANGUAGE CHAPTER 5

The pointers themselves can be stored in an array. Two lines can be com-
pared by passing their pointers to stromp. When two oul-of-order lines
have to be exchanged, the pointers in the pointer array are exchanged, not
the text lines themselves. This eliminates the twin problems of complscatcd
storage management and high overhead that would go with moving g the
actual lines.

The sorting process invalves three steps:

read all the fines of inpur
sort them
print them in order

As usual, it’s best to divide the program inte functions thal match this
natural division, with the main routine controlling things.

Let us defer the sorting step for a moment, and concentrate on the data
structure and the input and output. The input routine has to collect and
save the characters of each line, and build an array of pointers to the lines.
It will also have to count the number of input lines, since that information
is needed for serting and printing. Since the input functlon can only cope
with 2 finite number of input lines, it can return some illegal Tife count Tike-
-1.if 100 much mput lSjresented The output routine only has to print the

lines in the ofder ifi‘which they appear in the array of pointers.

#define NULL 4]
#define LINES 100 /% max lines to be sorted */

main() /% sort input lines w«/

{
char *lineptr[LINES]; /+ pointers to text lines =/
int nlines; /% number of input lines read */

if {(nlines = readlines(lineptr, LINES)) »= 0) {
sort{lineptr, nlines);
writelines(lineptr, nlines);

]

else
printf ("input tooc big to sortin");

CHAPTER 5 POINTERS AND ARRAYS 107

#define MAXLEN 1000

readlines(lineptr, maxlines) /« read input lines +/
char *lineptr[]:; /+ for sorting */
int maxlines;
{
int len, nlines;
char *p, *alloc(), line[MARXLEN];

nlines = 0;
while ((len = getline(line, MAXLEN)} > 0}
if (nlines »= maxlines)
return(-1};
elgse if ((p = alleci(len}) == NULL)
return(-1};
elge |
linellen-1] = *\0’; /* zap newline =*/
strepy(p, line);
lineptrnlines++] = p;
]
return(nlines);
1

The newline at the end of cach line is deleted so it will not affect the order
in which the lines are sorted.

writelines {(lineptr, nlines} /% write ocutput lines =/
char *lineptr([]l;

int nlines;

{

int i;

for {i = 0; i < nlines; i++}
printf ("%s\n", lineptr([il);
}

The mam new thing is the declarauon for lineptr:

— —————

char *lineptr [LINES];

e e

says that 1ineptr is an array of LINES elg_nlgrlffg each element of which is
a pointer to a cha_i That is, lineptr[i] is a character pointer, and
S~—
*1lineptr[i] “accesses a character.

Since lineptr is itself an array which is passed to writelines, it
can be treated as a pointer in exactly the same manner as our earlier exam-
ples, and the function can be written instead as

108 THE C PROGRAMMING LANGUAGE CHAPTER 5

writelines (lineptr, nlines) /% write output lines #/
char #lineptrl[];
int nlines;
{
while {--nlines >= 0)
printf ("%s\n", *lineptr++);
}

*1ineptr points initially to the first line; each increment advances it to the
next line while nlines is counted down.

With input and output under control, we can proceed to@ The
Shell sort from Chapter 3 needs minor changes: the declarations Fave to be
modified, and the comparison operation must be moved into a separate

function. The basic algorithm remains the same, which gives us some
confidence that it will still work.

sort(v, n)_ /* sort strings v[0) ... v[n-1] */
—~Char *v[]; _ /% into increasing order %/
int ny—

{
int gap, i, 3;
char +temp;

for {(gap = n/2; gap > Q; gap /= 2)
for (i = gap; i < n; i++)
for (i = i—gap; j »= 0; j —= gap) {
if (strcmp(v[jl, v[j+gapl]) <= 0}
break;
temp = v(ijl;
vI[jl = vIj+gapl;
v[jt+gap) = temp;

]

Since any individual element of v (alias lineptr) is a character pointer,
temp also should be, so one can be copied to the other.

We wrote the program about as straightforwardly as possible, so as to
get it working quickly. It might be faster, for instance, to copy the incoming
lines directly inic an array maintained by readlines, rather than copying
them into line and then to a hidden place maintained by allec. Butit’s
wiser to make the first draft something easy to understand, and worry about
“afficiency”” later. The way 1o make this program significantly faster is
probably not by avoiding an unnecessary copy of the input lines. Replacing
the Shell sort by something better, like Quicksort, is more likely to make a
difference.

In Chapter 1 we pointed out that because while and for loops test the
termination condition before executing the loop body even once, they help

CHAPTER 3 POINTERS AND ARRAYS 109

to ensure that programs will work at their boundaries, in particular with no
input. It is illuminating to walk through the functions of the sorting pro-
gram, checking what happens if there is no input text at all.

Exercise 5-5. Rewrite readlines to create lines in an array supplied by
main, rather than calling alloc to maintain storage. How much faster is
the program? O

5.9 [Initialization of Pointer Arrays

Consider the problem of writing a function month_name (n), which
returns a pointer to a character string containing the name of the n-th
month. This is an ideal application for an internal static arra
month_name contains a private array of character sirings, and returns a
pointer to the proper one when called. The topic of this section is how that
array of names is initialized.

The syntax is quite similar to previous initializations:

char #*month_name (n) /% return name of n—th month #/

int n;

{

static char #*namel] =(

"illegal month",
"Janunary'",
"February",
"March",
“April",
llMayll 5
"June",
IlJulyll h
"August",
"September",
"October",
"November",
"December"

i

return{{n < 1 || n > 12} ? namel[0] : nmame([n]);
}

The declaration of name, which is an array of character pomtﬁe_r_sJ is the same
as lineptr in the sorting example. The initializer is simply a list of char-
acter strings; each is assigned to the corresponding position in the array.
More precisely, the characters of the i-th strmg are placed somewhere else,
T

and a pointer to them is stored in name[l] . ~Since the size of the array
——— —— . ——

name is not specified, the compiler itself counts the initializers and fills in
the correct number.

110 THE € PROGRAMMING LANGUAGE CHAPTER 5

< '/6.10 Pointers vs. Multi-dimensional Arrays

Newcomers to C are sometimes confused about the difference between a
two-dimensional array and an array of pointers, such as name in the exam-
ple above, Given the declarations

int a[10]1[1D]);
int *b[10];

the usage of a and b may be similar, in that a[5]1[5] and b{5] (5] are
both legal references to a single int. But a is a true array: all 100 storage
cells have been allocated, and the conventional rectangular subscript calcula-
tion is done to find any given element. For b, however, the declaration
only allocates 10 pointers; each must be set to point to an array of integers.
Assuming that each does point to a ten-element array, then there will be
100 storage cells set aside, plus the ten cells for the pointers. Thus the array
of pointers uses slightly more space, and may require an explicit initializa-
tion step. But it has two advantages: accessing an element is done by
indirection through a pointer rather than by a multiplication and an addition,
and the rows of the array may be of different lengths. That is, each element
of b need not point to a ten-element vector; some may point to two ele-
ments, some to twenty, and some to none at all.

Although we have phrased this discussion in terms of integers, by far
the most frequent use of arrays of pointers is like that shown in
month_name: to store character strings of diverse lengths.

Exercise 3-6. Rewrite the routines day_of_year and month_day with
pointers instead of indexing. D

5.11 Command-line Arguments

In environments that support C, there is a way to pass command-line
arguments or parameters {0 a program when it begins executing. When
main is called to begin execution, it is called with two arguments. The first
(conventiorally called argc) is the number of command-line arguments the
program was invoked with; the second (argv) is a pointer to an array of
character strings that contain the arguments, one per string. Manipulating
these character strings is a common use of multiple levels of pointers.

The simplest illustration of the necessary declarations and use is the pro-
gram echo, which simply echoes its command-line arguments on a single
line, separated by blanks. That is, if the command

eche helle, world
is given, the oulput is
hello, world

CHAPTER 35 POINTERS AND ARRAYS 111

By convention, argv [0] is the name by which the program was invoked,
S0 argc is-at least 1. In the example above, arge is 3, and argv[0],
argv[1] and argv([2] are ‘‘echo”, “hello,”, and “world’’ respec-
tively, The first real argument is-argv (1] and the last is argv[argc-1].
If argc is 1, there are no command-line arguments after the program name.
This is shown in echo:

main{argc, argv) /* echo arguments; 1st version %/
int arge;

char wargv[];

(.

int i;

for (i = 1; i < argc; i++)
printf {"%a%c", argv(i], {(i<argec-1) ? /' r : ’'\n’);
]

Since argv is a pointer to an array of pointers, there are several ways to
write this program that involve manipulating the pointer rather than index-
ing an array. Let us show two variations.

main(argc, argv) /* echo arguments; 2nd version */
int argcec;
char wargv(];
{
while (--argc > 0}
printf{"%s%c", #++argv, (argc > 1) 2 ' ¢ : ‘'\n');
)

Since argv is a pointer to the beginning of the array of argument strings,
incrementing it by 1 (++argv) makes il point at the original argv [1]
instead of argv[0]. Each successive increment moves it along to the next
argument; *argv is then the pointer to that argument. At the same time,
argc is decremented; when it becomes zero, there are no arguments left to
print.

Alternatively,

main{arg¢, argv) /* echo arguments; 3rd version #/
int argce;
char xargv(];
(
while (--arge > 0)
rrintf{(arge > 1) ? "%s " : "%g\n", #++argv);
}

This version shows that the format argument of printf can be an expres-
sion just like any of the others. This usage is not very frequent, but worth
remembering. :

112 THE € PROGRAMMING LANGUAGE CHAPTER 5

As a second example, let us make some enhancements to the pattern-
finding program from Chapter 4. If you recall, we wired the search paitern
deep into the program, an obviously unsatisfactory arrangement. Following
the lead of the UNIX ulility grep, let us change the program so the pattern to
be matched is specified by the first argument on the command line,

#define MAXI.INE 1000

main{argec, argv) /* find pattern from first argument */
int argc;
char xargvl];

{
chary line[MAXLINE];

if (axrgc = 2)
printf ("Usage: find pattern\n"};
else
while {getline(line, MAXLINE) > 0}
if (index(line, argv[1]) >= 0)
printf ("%s*, line):
}

The basic model can now be elaborated to illustrate further pointer con-
structions. Suppose we want to allow two optional arguments. One says
‘print all {ines except those that match the pattern;”” the second sayvs ‘‘pre-
cede each printed line with its line number.”™

A common convention for C programs is that an argument beginning
with a minus sign introduces an optional flag or parameter. If we choose —x
(for “‘except’) to signal the inversion, and -n (“‘number’”) to request line
numbering, then the command

find -x -n the
with the input

now is the time
for all good men
to come to the aid
of their party.

should produce the output
2: faf all pood men

Optjonal arguments should be permitted in any order, and the rest of
' the gram should be insensitive 1o the number of arguments which were
actually present, In particular, the call 10 index should not refer to
argv[2] when there was a single flag argument and to argv[1] when
there wasn’t. Furthermore, it is convenient for users if option arguments

CHAPTER 3 POINTERS AND ARRAYS 113

can be concatenated, as in
find —-nx the
Here is the program.

#define MAXI.INE 1000

main(arge, argvi /% find pattern from first argument =/
int arge¢;
char xargv[];
{

char line{MAXLINE], %a;
long lineno 0;
int except = 0, number = 0;

Ir

while (--argc > 0 && {(»x++argv}[0] == =)
for (s = argv[0]+1; *s != "NO7; Ss4+)
switch (#s) [
caze ‘x‘':?
except = 1;
break;
case 'n';:
number = 1;
break;
default:
printf("find: illegal option %c\n", #g};
arge = 0;
break;

)

if (arge I= 1)
printf ("Usage: find -x -n pattern\n");

else
while (getline{line, MAXLINE) > 0) {
lineno++;
if ({index(line, wargv} »>= D) != except) |
if {number)

printf{'"%id: ", lipeno):
printf ("%s", line);

}

argv is incremented before each optional argument, and argc decre-
mented. If there are no errors, at the end of the loop arge should be 1 and
*argv should point at the pattern. Notice that *++argv is a pointer to an
argument string, (*++argv) [0] is its first character. The parentheses are
necessary, for without them the expression woutd be *++ (argv(0]),
which is quite different (and wrong). An alternate valid form would be

114 THE C PROGRAMMING LANGUAGE CHAPTER 5

*k+rargv,

Exercise 5-7. Write the program add which evaluates a reverse Polish
expression from the command line. For example,

add 2 3 4 + &
evaluates 2 X (3+4). O

Exercise 5-8. Modify the programs entab and detab (written as exercises
in Chapter 1) to accept a list of tab stops as arguments. Use the normal tab
settings if there are no arguments. O

Exercise 5-9. Exiend entab and detab to accept the shorthand
entab m +n

ic mean tabs stops every » columns, starting at column m. Choose con-
venient {for the user) default behavior. O

Exercise 5-10. Wrile the program tail, which prints the last # lines of its
input. By default, » is 10, let us say, but it can be changed by an optional
argument, so that _

tail =-n

prints the last » lines. The program should behave rationally no matter how
unreasonable the input or the value of n. Write the program so it makes
the best use of available storage: lines should be stored as in sort, not in a
two-dimensional array of fixed size. D

5.12 Pointers to Functions

In C, a function itself is not a variable, but it is possible to define a
pointer to a function, which can be manipulated, passed to functions, placed
in arrays, and so on. We will illustrate this by modifying the sorting pro-
cedure written earlier in this chapter so that if the optional argument —n is
given, it will sort the input lines numerically instead of lexicographically.

A sort often consists of three parts — a comparison which determines
the ordering of any pair of objects, an exchange which reverses their order,
and a sorting algorithm which makes comparisons and exchanges until the
objects are in order. The sorting algorithm is independent of the com-
parison and exchange operations, so by passing different comparison and
exchange functions to it, we can arrange 1o sort by different criteria. This is
the approach taken in our new sort.

The lexicographic comparison of two lines is done by stremp and swap-
ping by swap as before; we will also need a routine numcmp which com-
pares two lines on the basis of numeric value and returns the same kind of
condition indication as stremp does. These three functions are declared in

CHAPTER 5

POINTERS AND ARRAYS 115

main and pointers to them are passed to sort. sort in turn calls the
functions via the pointers, We have skimped on error processing for argu-
ments, 50 as to concentrate on the main issues.

#define LINES 100 /+ max number of lines to be sorted w/

main{argc, argv) /% sort input lines */

int arge;

char *argv(];

{

char +*lineptr[LINES]; /% pointers to text lines #/
int nlines; /% number of input lines read =/
int stremp(), numcmp(); /* comparison functions =/
int swap(); /% exchange function */
int numeri¢ = 0; /% 1 if numeric sort */
if (arge>»1 && argv([1) (0] == = && argv[1][1] == fn")
numeric = 1;
if {(nlines = readlines{lineptr, LINES)) »= 0) {
if (numeric)
sort(lineptr, nlines, numcmp, swap);
else
sort(lineptr, nlines, strcmp, swapl;
writelines(lineptr, nlines);
} else

H

printf{"input too big to scrt\a");

strcmp, numcmp and swap are addresses of functions; since they are
known to be functions, the & operator is not necessary, in the same way that
it is not needed before an array name. The compiler arranges for the
address of the function to be passed.

The second step is to modify sort:

116 THE € PROGRAMMING LANGUAGE CHAPTER §

sort{v, n, comp, exch) /* sort strings v(0]...v[n-1] =/
char #v[]; /* into increasing order */
int n;

int {*comp) (}, (xexch)(});
{
int gap, i, j;

for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i++}
for (j = i—gap; j »= 0; j -= gap) {
if ({xcomp} (v(j], v[j+tgapl) <= 0}
break;
(vexch) (&v[j]l, &v[j+gapl):

)
The declarations should be studied with some care.
int (*comp) ()

says that comp is a pointer to a function that returns an int. The first set
of parentheses are necessary; without them, —_

int »comp()

would say that comp is a function returning a pointer to an int, which is
quite a different thing.
The use of comp in the line

if ((#comp} (v[]), v(j+gapl) <= 0}

is consistent with the declaration: comp is a pointer to a function, *comp is
the function, and

(®comp} (v[3], v[j+gapl}

is the call to it. The parentheses are needed so the components are correctly
associated.

We have already shown strcmp, which compares two strings. Here is
numcmp, which compares two strings on a leading numeric value;

CHAPTER 3 POINTERS AND ARRAYS 117

numemp {81, s2) /+ compare s1 and s2 numerically »/
char =#s51, »g2;
{ ' .

double atof(}, v1, v2;

w1 atof{s1);

v2 = atof(s2);

if (w1 < v2)
returni(-1);

else if (v1 > vZ)
return{1};

else
return{0};

)

The final step is to add the function swap which exchanges two
pointers. This is adapted directly from what we presented early in the
chapter.

swap (px, py) /% interchange «px and *py +/
char »px[], »pvI[];:
{

char *temp;

temp = #px;

¥pX = *py;

*py = temp;
)

There are a variety of other options that can be added to the sorting pro-
gram; some make challenging exercises.

Exercise 5-11. Modify sort to handle a —r flag, which indicates sorting in
reverse {decreasing) order. Of course —r must work with -n. O

Exercise 5-12. Add the option -£ to fold upper and lower case together, so
that case distinctions are not made during sorting: upper and lower case data
are sorted together, so that a and A appear adjacent, not separated by an
entire case of the alphabet. O

Exercise 5-13. Add the —d (*‘dictionary order’’) option, which makes com-
parisons only on letters, numbers and blanks. Make sure it works in con-
Junction with —£. O

Exercise 5-14. Add a field-handling capability, so sorting may be done on
fields within lines, each field according to an independent set of options.
(The index for this book was sorted with —d£ for the index category and —n
for the page numbers.) D

R = B o 5
] 3 o T
S e T TR o T T

(PR S
R ey e
.J o I ey s

"

M— e ll'-
NP EDH AT
L it R
i '{'1J§ . :l#j:T

A

3
N

=%
e

CHAPTER 6: STRUCTURES

A structure is a collection of one or more variables, possibly of different
types, grouped together under a single name for convenient handling.
(Structures are called “‘records’” in some languages, most notably Pascal.)

The traditional example of a structure is the payroll record: an
“employee’” is described by a set of attributes such as name, address, social
security number, salary, etc. Some of these in turn could be structures: a
name has several components, as does an address and even a salary.

Structures help to organize complicated data, particularly in large pro-
grams, because in many situations they permit a group of related variables
1o be treated as a unit instead of as separate entities. In this chapter we will
iry to illustrate how structures are used. The programs we will use are
bigger than many of the others in the book, but still of modest size.

6.1 Basics

Let us revisit the date conversion routines of Chapter 5. A date consists
of several parts, such as the day, month, and year, and perhaps the day of
the year and the month name. These five variables can all be placed into a
single structure like this:

struct date {
int day;
int month;
int year;
int yearday;
char mon_name([4];
);

The keyword struct introduces a structure declaration, which is a tist
of declarations enclosed in braces. An optional name called a structure tag
may follow the word struct (as with date here). The tag names this
kind of structure, and can be used subsequently as a shorthand for the
+detailed declaration.

119

120 THE C PROGRAMMING LANGUAGE CHAPTER &

The elements or variables mentioned in a structure are called members.
A structure member or tag and an ordinary (i.e., non-member) variable can
have the same name without conflict, since they can always be distinguished
by context. Of course as a matier of style one would normally use the same
names only for closely related objects,

The right brace that terminates the list of members may be followed by
a list of variables, just as for any basic type, That is,

struct { ... } x, v, Z;
is syntactically analogous Lo
int x, y, z;

in the sense that each statement declares x, y and z to be variables of the
named type and causes space to be allocated for them. g

A structure declaration that is not followed by a list of variables allocates
no storage; it merely describes a template or the shape of & structure, If the
declaration is tagged, however, the tag can be used later in definitions of
actual instances of the structure. For example, given the declaration’ of
date above,

struct date 4;

defines a variable 4 which is a structure of type date. An external or static
structure can be initialized by following its definition with a list of initializers
for the compoenents: ’

struct date 4 ={ 4, 7, 1776, 186, "Jul" };

A member of a particular structure is referred to in an expression by a
construction of the form
structure-name . member ‘
I‘.
The structute member operator **,”" connects the structure name |and the
member name. To set leap from the date in structure 4, for example,
]

leap = G.year % 4 == 0 && d.year % 100 != 0 /

1 d.year % 400 == 0; /
/

/

or to check the month name,
if (stremp{d.mon_name, "Aug") == 0) ...

or to convert the first character of the month name to lower case,
d.mon_name [0] = lower{(d.mon_name[0]);

Structures can be nested; a payroll record might actually look like

CITAPTER & STRUCTURES 121

struct person |{
char name [NAMESIZE] ;
char address (ADRSIZE];
long =zipcode;
long ss_number;
double salary;
struct date birthdate;
struct date hiredate;
}i

The person structure contains two dates. If we declare emp as
struct person emp;

then
emp.birthdate.month

refers to the month of birth., The structure member operator . associates
left to right,

6.2 Structures and Functions

There are a number of restrictions on C structures. The essential rules
are that the only operations that you can perform on a siructure are take its
address with &, and access one of its members, This implies that structures
may not be assigned to or copied as a unit, and that they can not be passed
to or returned from functions, (These restrictions will be removed in forth-
coming versions.) Pointers to structures do not suffer these limitations,
however, so structures and functions do work together comfortably. Finally,
automatic structures, like automatic arrays, cannot be initialized; only cxter-
nal or SlaliC structures can.

Let us investigate some of these points by rewriting the date conversion
functions of the last chapter 10 use siructures. Since the rules prohibit pass-
ing a structure 1o a function directly, we must either pass the components
separately, or pass a pointer to the whole thing. The first alternative uses
day_of_year as we wrole it in Chapter 5:

d.yearday = day_cf_year(d.year, d.month, d.day);
The other way is to pass a pointer, If we have declared hiredate as
struct date hiredate;
and re-written day_of_year, we can then say
hiredate.yearday = day_of_year (khiredate);

to pass a pointer to hiredate to day_of_year. The function has to be
modified because its argument is now a pointer rather than a list of vari-
ables.

122 THE € PROGRAMMING LANGUAGE CHAPTER &

day_of_year (pd) /» set day of year from month, day =/
struct date w»pd;

{
int i, day, leap;

day = pd-»day;
leap = pd-»year % 4 == 0 && pd->year % 100 != 0
|| pd->vyear % 400 == 0;
for (i = 1; i < pd->month; i++)}
day += day_tablleap] [i1;
return {day) ;
}

The declaration
struct date =»pd;

says that pd is a pointer to a structure of type date. The notation
exemplified by

pd—>year ™~
is new. If p is a pointer o a structure, then
p->member-of-siructure
refers to the particular member. (The operator —> is a minus sign followed
by ».)
Since pd points to the structure, the year member could also be
referred to as
{#pd} .year

but pointers to structures are so frequently used that the ~> notation is pro-
vided as a convenient shorthand. The parentheses are necessary in
(#pd) .year because the precedence of the structure member operator , is

higher than *. Both —> and . associate from left to right, so /
|

p->g->menb
emp.kirthdate.month
are

(p—>q) ->memb i
{emp.birthdate} .month > !

For completeness here is the other function, month_day, rewritten 1o
use the structure.

CHAFTER 6 STRUCTURES 123

month_day({pd) /* set month and day from day of year =/
struct date =pd;
{

int i, leap;

leap = pd->year % 4 == 0 && pd->year % 100 != 0
Il pd->year % 400 == 0;
pd-»>day = pd-»yearday;
for (i = 1; pd-»day > day_tabl[leap] [i]; i++)
pd->day -= day_tabklleap] [i];
pd->month = i;

)

The structure operators -> and ., together with ()} for argument lists
and [1 for subscripts, are at the top of the precedence hierarchy and thus
bind very tightly. For example, given the declaration

struct |
int x;
int #y;
bo*p;
then
++p->x

increments x, not p, because the implied parenthesization is ++ (p—>x).
Parentheses can be used to alter the binding: (++p)->x increments p
before accessing x, and (p++)->x increments p afterward. (This last set
of parentheses is unnecessary. Why?)

In the same way, *p->y fetches whatever y points 10; *p—>y++ incre-
ments y after accessing whatever it points to (just like *s++); (*p->y) ++
increments whatever y points to; and *p++->y increments p after accessing
whatever y points to.

6.3 Arrays of Structures

Structures are especially suitable for managing arrays of related vari-
ablcs. For instance, consider a program to count the occurrences of each C
keyword. We need an array of character strings to hold the names, and an
array of integers for the counts. One possibility is to use two parallel arrays
keyword and keycount, as in

char *keyword[NKEYS];
int keycount[NKEYS];

But the very fact that the arrays are parallel indicates that a different OTgani-
zation is possible. Each keyword entry is really a pair:

124 THE € PROGRAMMING LANGUAGE CHAPTER 6

char r*keyword;
int keycount;

and there is an array of pairs. The structure declaration

struct key’ {
char xkeyword;
int keycount;
) keytab[NKEYS];

defines an array keytab of structures of this type, and allocates storage to
them. Each element of the array is a structure. This could also be written

struct key |
char xkeyword;
int keycocunt;

b8

struct key keytab[NKEYS];

Since the structure keytab actually contains a constant set of names, it
is easiest to initialize it once and for all when it is defined. The structure
initialization is quite analogous to earlier ones — the definition is followed
by a list of initializers enclosed in braces:

struct key |
char *keyword;
int keycount;

} keytabl]l ={
"break™, 0O,
"case", 0,
tchar", 0,
‘continue”, 9,
n"default", 0,
i .. x/
"unsigned", 0,
Ywhile", 0

)

The initializers are listed in pairs corresponding to the structure members.
It would be more precise to enclose initializers for each *‘row™ or structure
in braces, as in

{ "break", 0 },
{ "cage", 0],

but the inner braces ate nol necessary when the initializers are simple vari-
ables or character strings, and when all are present. As usual, the compiler
will compute the number of entries in the array keytab if initializers are
present and the [] is left empty.

CHAPTER & STRUCTURES 125

The keyword-counting program begins with the definition of keytab.
The main routine reads the input by repeatedly calling a function getword
that fetches the input one word at a time. Each word is looked up in
keytab with a version of the binary search function that we wrote in
Chapter 3. (Of course the list of keywords has to be given in increasing
order for this to work.}

#define MAXWORD 20

main{) /* count C keywords /
{

int n, t;

char word [MAXWORD] ;

while ((t = getword{word, MAXWORD)) != EOF)
if (t == LETTER]}
if ({n = binary{word, keytab, NKEYS)) >= D)
keytab[n] .keycount++;
for (n = 0; n < NKEYS; n++)
if (kewytabin].keycount > 0)
printf ("%4d %s\n",
keytabln] .keycount, keytabln].keyword);

binary{word, tab, n) /+* find word in tab(0]...tab[n-1] =/
char *word;

struct key tabl];

int n;

{

int low, high, mid, cond;

low = 0;
high = n - 1;
while {low <= high) |
mid = {low+high)} / 2;
if ((cond = stremplword, tablmidl.keyword)) < 0)
high = mid - 1;
else if {(cond > 0}
low = mid + 1;
else
return{mid);
}
return(-1);

}

We will show the function getword in a moment; for now il suffices to say
that it returns LETTER each time it finds a word, and copies the word into
its first argument.

126 THE C PROGRAMMING LANGUAGE CHAPTER &

The quantity NKEYS is the number of keywords in keytab. Although
we could count this by hand, it’s a lot easier and safer to do it by machine,
especially if the list is subject to change. One possibility would be to ter-
minate the list of initializers with a null pointer, then loop along keytab
uniil the end is found.

But this is more than is needed, since Lhe size of the array is comipletely
determined at compile time. The number of entries is just

size of keytab / size of struct key

C provides a compile-time unary operator called sizeof which can be used
to compute the size of any object. The expression

sizecf (ohject)

yields an integer equal to the size of the specified object. (The size is given
in unspecified units called “*bytes,”” which are the same size as a char.)
The object can be an actual variable or array or structure, or the name of a
basic type like int or dcuble, or the name of a derived type like a struc-
ture. In our case, the number of keywords is the array size divided by ,'the
size of one array element. This computation is used in a #define state-
ment to set the value of NKEYS:

#define KKEYS (sizeof (keytah) / sizeof{struct key)}

Now for the function getword. We have actually written a more gen-
eral getword than is necessary for this program, but it is not really much
more complicated. getword teturns the next “‘word” from the input,
where a word is either a string of letters and digits beginning with a letter,
or a single character. The type of the object is returned as a function value;
it is LETTER if the token is a word, EOF for end of file, or the character
itself if it is non-alphabetic.

CHAPTER 6 STRUCTURES 127

getword{w, lim) /* get next word from input */
char *w;
int lim;
{
int ¢, t;
if (typelc = +w++ = getch{}]) != LETTER) |
= "\07;
returnic};
}
while (—1lim > 0) |
t = typelc = »w++ = getch(});
if (t != LETTER && t != DIGIT) |
ungetchic);
break;
}
1
*{w=1) = *5\07;

return (LETTER) ;
}

getword uses the rtoutines getch and ungetch which we wrote in
Chapter 4: when the collection of an alphabetic token stops, getword has
gone one character too far. The call to ungetch pushes that character back
on the input for the next call.

getword calls type 10 determine the type of each individual character
of input, Here is a version for the ASCIf alphabet only.

type (c} /* return type of ASCII character =*/
int o;
(
if {c »= ’a’ && ¢ <= 'z' || € »= ‘A’ &L ¢ <= 'Z*)
return (LETTER) ;
elgse if (¢ »= '0’ && ¢ <= '9")
return(DIGIT) ;
else
returnic);

!

The symbolic constants LETTER and DIGIT can have any values that do
not conflict with non-alphanumeric characters and EOF; the obvious choices
are

#define LETTER ‘a’

#define DIGIT o’

getword can be faster if cails to the function type are replaced by
references to an appropriate array type [1. The standard C library provides
macros called isalpha and isdigit which operate in this manner.

128 THE € PROGRAMMING LANGUAGE CHAPTER 6

Exercise 6-1, Make this modification to getword and measure the change
in speed of the program. 0O

Exercise 6-2. Write a version of type which is independent of character”
set. O

Exercise 6-3. Write a version of the keyword-counting program which does
not count occurrences contained within quoted strings. O

6.4 Pointers to Structutes

To illustrate some of the considerations involved with pointers and
arrays of structures, let us write the keyword-counting program again, this’
time using pointers instead of array indices.

The external declaration of keytab need not change, but main and

binazry do need modification. -
main() /+ count C keywords; pointer version */
1
int +t;

char word[MAXWORD];
struct key *binary{}, *p;

while ({t = getword(word, MAXWORD)) != EOF)
if (¢t == LETTER)
if ({p=binary(word, keytab, NKEYS3}) != NULL)

p->Keycount++;
for (p = keytab; p < keytab + NKEYS; p++)
if {p-s>keycount > 0)
printf ("%dd %s\n", p->kevcount, p—>keyword!};

CHAPTER & STRUCTURES 129

struct key x*binary{word, tab, n) /% find word /
char sword; /% in tab(0])...tab[n-1]1 =%/
struct key tab[]:
int n;
(

int cond;

struct key slow = &tabf0];

struct key «high = &tabln-1];

struct key +mid;

while (low <= high] {

mid = low + (high-low) / 2;

if {{cond = strcmpiwocrd, mid->keyword)} < 0)
high = mid - 1;

else if {cond > 0}
low = mid + 1;

else
return (mid) ;

H

}
return (NULL) ;

There are several things worthy of note here, First, the declaration of
binary must indicate thatl it returns a peointer to the structure type key,
instead of an integer; this is declared beth in main and in binary. If
binary finds the word, it returns a pointer (o it; if it fails, it returns NULL.

Second, all the accessing of elements of keytab is done by pointers.
This causes one significant change in binary: the computation of the mid-
dle element ¢an no longer be simply

mid = {low+high} / 2

because the gddition of two pointers will not produce any kind of a useful
answer (even when divided by 2), and in fact is illegal. This must be
changed to

mid = low + {(high-low) / 2

which sets mid to point to the element halfway between low and high.
You should also study the initializers for low and high. It is possible
to initialize a pointer to the address of a previously defined object; that is
precisely what we have done here.
In main we wrote

for {p = keytab; p < keytab + NKEYS; p++)

If p is a pointer to a structure, any arithmetic on p takes into account the
actual sizc of the structure, so p++ increments p by the correct amount to

130 THE C PROGRAMMING LANGUAGE CHAPTER 6

get the next element of the array of structures. But don’t assume that the
size of a structure is the sum of the sizes of its members — because of
alignment requirements for different objects, there may be “‘holes™ in a
structure,

Finally, an aside on program format. When a function returns a compli-
cated type, as in

struct key #binary(word, tab, n)

the function name can be hard to see, and to find with a text editor.
Accordingly an alternate style is sometimes used:

struct key =«
binary{word, tab, n)

This is mostly a matter of personal taste; pick the form you like and hold to
it.

6.5 Self-referential Structures

Suppose we want to handle the more general problem of counting the
occurrences of ail the words in some input. Since the list of words isn’t
known in advance, we can't conveniently sort it and use a binary search.
Yet we can’t do a linear search for each word as il arrives, to see if it’s
already been seen; the program would take forever. {More precisely, its
expected running time would grow quadratically with the number of input
words.) How can we organize the data to copg efficiently with a list of arbi-
trary words?

One solution is 10 keep the sei of words seen so far sorted at all times,
by placing each word into its proper position in the order as it arrives. This
shouldn’t be done by shifting words in a linear array, though — that also
takes too long. Instead we will use a data structure called a binary tree.

The tree contains one ‘‘node’’ per distinct word; each node contains

a poimier (v the text of the word J
a count of the number of occurrences

a pointer 1o the left child node

a pointer 1o the right child node

No node may have more than two children; it might have only zero or one.
The nodes are maintained so that at any node the left subtree contains
only words which are less than the word al the node, and the righi subtree
contains only words that are greater. To find out whether a riew waord is
already in the tree, one starts at the root and compares the new word to the
word stored at that node, If they match, the question is answered
affirmatively. If the new word is less than the tree word, the search contin-
ues at the left child; otherwise the right child is investigated, [f there is no
child in the required direction, the new word is not in the tree, and in fact

CHAPTER 6 STRUCTURES 131

the proper place for it to be is the missing child. This search process is
inherently recursive, since the search from any node uses a search from one
of its children. Accordingly recursive routines for ingertion and printing will
be most natural,

Going back to the description of a node, it is clearly a structure with
four components:

struct tnode | /+ the basic node +/
char *word; /* points to the text =/
int count; /+ number of occurrences %/
gtruct tnode =left; /% left child =/
struct tnode #right; /* right child =#/
bi

This “‘recursive’’ declaralion of a node might look chancy, but it’s actually
quite correct. It is illegal for a structure to contain an instance of itself, but

struct tnode wleft;

declares 1left to be a pointer to a node, not a node itself.

The code for the whole program is surprisingly small, given a handful of
supporting routines that we have already written. These are getword, to
fetch each input word, and alloc, to provide space for squirreling the
words away.

The main routine simply reads words with getword and installs them
in the tree with tree,

#define MAXWORD 29

main() /* word frequency count */
{
struct tnode *root, #tree{);
char word [MAXWORD] ;
int +t;

root = NULL; i
while ((t = getword(word, MAXWORD)) != EOF)
if (t == LETTER)
root = tree{root, word);
treeprint{root);

}

tree itself i§ straightforward. A word is presented by main to the top
level (the root) of the tree. At each stage, that word is compared to the
word already stored at the node, and is percolated down to either the left or
right subtree by a recursive call to tree. Eventually the word either
matches something already in the tree {in which case the count is incre-
mented), or a null pointer is encountered, indicating that a node must be

132 THE € PROGRAMMING LANGUAGE CHAFTER 6

created and added to the tree. If a new node is created, tree returns a
poinier to it, which is installed in the parent nodc.

struct tnode #tree(p, w) /% install w at or below p */
struct tnode «p;
char #w;
{
struct tnode xtalloc();
char *strsavel);
int cond;

if (p == NULL)‘} /% a new word has arrived +/
p = talloe{); /% make a new node */
p->word = strsave{w);
p=>count = 1;
p->left = p-»right = NULL;

] else if {(cond = strcmp(w, p->word}} == 0}
p->=count++; /% repeated word #»/

else if (cond < 0) /* lower goes into left subtree =/

p-»left = tree(p->left, w);
else /% greater into right subtree «/
p->right = tree{p—>»right, wl;
returnip);
)

Storage for the new node is fetched by a routine tallog, which is an
adaptation of the alloc we wrole earlier. It returns a pointer 1o a free
space suitable for holding a tree node. (We will discuss this more in a
moment.) The new word is copied to a hidden place by strsave, the count
is initialized, and the two children are made null. This part of the code is
executed only at the edge of the tree, when a new node is being added. We
have (unwisely for a production program) omitted crror checking on the
values returned by strsave and talloc.

treeprint prints the tree in left subtree order; a1 each node, it prints
the left subtree (all the words less than this word), then the word itself,
then the right subtree (all the words greater). If you feel shaky about recur-
sion, draw yourself a trec and print it with treeprint; it’s one of the
cleanest recursive routines you can find.

CHAPTER & STRUCTURES 133

treeprintip) /* print tree p recursively =/
struct tnode *p;
{
if (p != NULL) ([
treeprint {p->left);
printf ("%4d %s\n", p-»count, p->word};
treeprint (p->right);

)

A practical note: if the tree becomes ““unbalanced’ because the words
don’t arrive in random order, the running lime of the program can grow too
fast. As a worst case, if the words are already in order, this program does
an expensive simulation of linear search. There are generalizations of the
binary tree, notably 2-3 trees and AVL trees, which do not suffer from this
worst-case behavior, but we will not describe them here.

Before we leave this example, it is also worth a brief digression on a
problem related to storage allocators. Clearly it’s desirable that there be
only one storage allocator in a program, even though it allocates different
kinds of objects. But if one allocator is 10 process requests for, say, pointers
to chax’s and pointers to struct tnode's, two questions arise. First,
how does it meet the requirement of most real machines that objects of cer-
tain types must satisfy alignment restrictions (for example, integers often
must be located on even addresses)? Second, what declarations can cope
with the fact thal alloc necessarily returns different kinds of pointers?

Alignment requirements can generally be satisfied easily, at the ¢ost of
some wasted space, merely by ensuring that the allocator always returns a
pointer that meets aff alignment restrictions. For example, on the PDP-11 it
is sufficient that alloc always return an even pointer, since any lype of
object may be stored at an even address. The only cost is a wasted character
on odd-length requests. Similar actions are taken on other machines. Thus
the implementation of alloc may not be portable, but the usage is. The
alloc of Chapter 5 does not guarantee any particular alignment; in Chapter
8 we will show how to do the job right.

The question of the type declaration Yor alloc is a vexing one for any
language that takes its type-checking seriously. In C, the besl procedure is
to declare that alloc returns a pointer 1o char, then explicitly coerce the
pointer into the desired type with a cast. That is, if p is declared as

char =*p;
then
(struct tnode *) p

converts it into a tnode pointer in an expression. Thus talloc is written

134 THE C PROGRAMMING LANGUAGE CHAPTER 6

as

struct tnode *talloc()
{
char *alloc();

return((struct tnode *)} alloc{sizeof {struct tnode}));

)

This is more than is needed for current compilers, but represents the safest
course for the future,

Exercise 6-4. Write a program which reads a C program and prints in alpha-
betical order each group of variable names which are identical in the first 7
characters, but different somewhere thereafter. (Make sure that 7 is a
parameter). O

Exercise 6-5. Write a basic cross-referencer: a program which prints a list of
all words in a document, and, for each word, a list of the line numbers on
which it occurs, O

Exercise 6-6. Write a program which prints the distinct words in its input
sorled into decreasing order of frequency of occurrence. Precede each word
by its count. O

6.6 Table Lookup

In this section we will write the innards of a table-lookup package as an
illustration of more aspects of structures. This code is typical of what might
be found in the symbol table management routines of a macro processor or
a compiler. For example, consider the C #define statement. When a line
like

$define YES 1

is encountered, the name YES and the replacement text 1 are stored in a
table. Later, when the name YES appears in a statement like

inword = YES;

it must be replaced by 1.

There are two major routines that manipulate the names and replace-
ment texts. install (s, t) records the name s and the replacement text
t in a table; s and t are just character strings. lockup (s) searches for s
in the table, and returns a pointer to the place where it was found, or NULL
if’ it wasn’t there.

The algorithm used is a hash search — the incoming name is converied
into a small positive integer, which is then used to index into an array of
pointers. An array element points to the beginning of a chain of blocks

CHAPTER & STRUCTURES 135

describing names that have that hash value. It is NULL if no names have
hashed to that value. |

A block in the chain is a structure centaining pointers to the name, the
replacement text, and the next block in the c¢hain. A null next-pointer
marks the end of the chain. '

struct nlist { /# basic table entry */

char +«name;

char +def;

struct nlist *next; /* next entry in chain */
ti

The pointer array is just

#define HASHSIZE 140
static struct nlist *hashtab[HASHSIZE]; /*+ pointer table »/

The hashing function, which is used by both lookup and install,
simply adds up the character values in the string and forms the remainder
modulo the array size. (This is not the best possible algorithm, but it has
the merit of exireme simplicity.)

hash(s} /* form hash value for string s +/
char =*s;
{

int hashval;

for (hashwval = 0; #5 I= *\0';)
hashval += #5++;
return(hashval % HASHSIZE);
)

The hashing process produces a starting index in the array hashtab; if
the string is to be found anywhere, it will be in the chain of blocks begin-
ning there. The search is performed by lookup. If leokup finds the
entry already present, it returns a pointer to it; if not, it returns NULL.

struct nlist *lockup(s) /» look for s in hashtab =/
char =*s;
{

struct nlist »np;

for (np = hashtab[hash{s)]; np != NULL; np = np->next)
if (stremp(s, np->name) == 0)
return(np); /f* found it +/f
return({NULL); /« not found =/
}

install uses lookup to determine whether the name being installed
is already present; if so, the new definition must supersede the old one.

136 THE C PROGRAMMING LANGUAGE CHAPTER &

Otherwise, a completely new entry is created. install returns NULL if for
any reason there is no room for a new entry.

struct nlist w»install (name, def) /% put (name, def) =/
char *name, =*def; /% in hashtab */
{ !

struct nlist *np, *lookup():

char #strsave(), =*alloc(};

int hashval;

if ((np = lookup{name)) == NULL) { /% not found %/
np = (struct nlist #) alloc(sizeof(xnpl);
if {np == NULL)
return{NULL) ;
if {{np->name = strsave({name)) == NULL)

return (NULL] ;
hashval = hash({np->name};
np->next = hashtabl[hashvall;
hashtabl[hashvall = np;

} else /% already there */
free (np->def}); /% free previous definition */
if {{np->def = strsave(def)) == NULL)

return (NULL) ;
returninp);
!

strsave merely copies the string given by its argument into a safe
place, obtained by a call on alloc. We showed the code in Chapter 5.
Since calls to allec and free may occur in any order, and since alignment
maiters, the simple version of alloc in Chapter 5 is not adequate here; see
Chapters 7 and §.

Exercise 6-7. Write a routine which will remove a name and definition from
the table maintained by lookup and install. O

Exercise 6-8. Implement a simple version of the g¢define processor suit-
able for use with C programs, based on the routines of this section. You
may also find getch and ungetch helpful. 0O

6.7 Fields

When storage space is at a premium, it may be necessary to pack several
objects into a single machine word; one especially common use is a set of
single-bit flags in applications like compiler symbol tables. Externally-
imposed data formats, such as interfaces to hardware devices, also often
require the ability to get at pieces of a word.

CHAPTER 6 STRUCTURES 137

Imagine a fragment of a compiler that manipulates a symbol table. Fach
identifier in a program has certain information associated with it, for exam-
ple, whether or not it is a keyword, whether or not it is external and/or
static, and so on. The most compact way to encode such information is a
set of one-bit flags in a single char or int.

The usual way this is done is to define a set of “*‘masks™ corresponding
to the relevant bit positions, as in

#define KEYWORD 01
$define EXTERNAL 02
#define STATIC 04

(The numbers must be powers of two.) Then accessing the bits becomes a
matter of “‘bit-fiddling” with the shifting, masking, and complementing
operators which were described in Chapter 2.

Certain idioms appear frequently:

flags |= EXTERNAL | STATIC;

turns on the EXTERNAL and STATIC bits in flags, while
flags &= ~ (EXTERNAL | STATIC);

turns them off, and
if ((flags & (EXTERNAL | STATIC)) == 0} ...

is true if both bits are off.

Although these idioms are readily mastered, as an alternative, C offers
the capability of defining and accessing fields within a word directly rather
than by bitwise logical operators. A field is a set of adjacent bits within a
single int. The syntax of field definition and access is based on structures.
For example, the symbol table $define’s above could be replaced by the
definition of three fields:

struct {
unsigned is_keyword : 1;
unsigned is_extern : 1;
unsigned is_static : 1;
I f£lags;

This defines a variable called flags that contains three 1-bit fields. The
number following the colon represents the field width in bits. The fields are
declared unsigned to emphasize that they really are unsigned quantities,

Individual fields are referenced as flags.is_keyword,
flags.is_extern, etc., just like other structure members. Fields behave
like small, unsigned integers, and may participate in arithmetic expressions
just like other integers. Thus the previous examples may be written more
naturally as

138 THE C PROGRAMMING LANGUAGE CHATTER 6

flags.is_extern = flags.is_static

I
-
-

to turn the bits on;
flags.is_extern = flags.is_static = 0;
to turn them off;, and
if (flags.is_extern == 0 && flags.is_static == 0)

to test them.

A field may not overlap an int boundary; if the width would cause this
to happen, the field is aligned at the next int boundary. Fields need not be
named: unnamed fields (a colon and width only) are used for padding. The
special width 0 may be used to force alignment at the next int boundary.

There are a number of caveats that apply to fields. Perhaps most
significant, fields are assigned left to right on some machines and right to
left on others, reflecting the nature of different hardware. This means that
although fields are quite useful for maintaining internally-defined data struc-
tures, the question of which end comes first has to be carefully considered
when picking apart externally-defined data.

Other restrictions to bear in mind: fields are unsigned; they may be
stored only in int’s {(or, equivalently, unsigned’s); they are not arrays;
they do not have addresses, so the & operator cannot be applied to them.

6.8 Unions

A union is a variable which may hold (at different times} objects of
different types and sizes, with the compiler keeping track of size and align-
ment requirements. Unions provide a way to manipulate different kinds of
data in a single area of storage, without embedding any machine-dependent
information in the program.

As an example, again from a compiler symbol table, suppose that con-
stants may be int’s, float's or character pointers. The value of a particu-
lar constant must be stored in a variable of the proper type, yet it is most
convenient for table management if the value occupies the same amount of
storage and is stored in the same place regardless of its type. This is the
purpose of a union — to provide a single variable which can legitimately
hold any one of several types. As with fields, the syntax is based on struc-
tures.

union u_taqg |
int dival}
float fval;
char *pwval;
} uval;

CHAPTER 6 " STRUCTURES 139

The variable uval will be large enough to hold the largest of the three
types, regardless of the machine it is compiled on — the code is indepen-
dent of hardware characteristics. Any one of these types may be assigned to
uval and then used in expressions, so long as the usage is consistent: the
type retrieved must be the type most recently stored. It is the responsibility
of the programmer to keep track of what type is currently stored in a union;
the results are machine dependent if something is stored as one type and
extracted as another.

Syntactically, members of a union are accessed as

union-name . member
or
union-ponter —» member

just as for structures. If the variable utype is used to keep track of the
current type stored in uval, then one might see code such as

if (utype == INT}
printf {("%d\n", uval.ival);
else if (utype == FLOAT)
printf ("%£f\n", uval.fval);
else if (utype == STRING}
printf ("%s\n", uval.pval};
else
printf ("bad type %d in utypein', utype);

Unions may occur within structures and arrays and vice versa. The
notation for accessing a member of a union in a structure (or vice versa) is
identical to that for nested structures. For example, in the structure array
defined by

struct |
char +name;
int flags;
int utype;
union {
int iwval;
float fwal;
char *pval;
} uval;
] symtab[NSYM];

the variable ival is referred to as
symtab[i] .uval.ival

and the frst character of the string pval by

140 THE C PROGRAMMING LANGUAGE CHAPTER 6

*symtabli) .uval.pval

In effect, a union is a structure in which all members have offset zero,
the structure is big enpugh to hold the “*widest’’ member, and the align-
ment is appropriate for all of the types in the union. As with structures, the
onty operations currently permitted on unions are accessing a member and
taking the address, unions may nol be assigned to, passed to functions, or
returned by functions. Pointers to unions can be used in a manner identical
to pointers to structures.

The storage allocator in Chapter 8 shows how a union can be used io
force a variable to be aligned on a particular kind of storage boundary.

6.9 Typedef

C provides a facility called typedef for creating new data type names.
For example, the declaration

typedef int LENGTH;

makes the name LENGTH a synonym for int. The “‘type” LENGTH can be
used in declarations, casts, etc., in exactly the same ways that the type int
can be:

LENGTH len, maxlen;
LENGTH +lengths([];

Similarly, the declaration
typedef char *STRING;

makes STRING a synonym for char #% or character pointer, which may
then be used in declarations like

STRING p, lineptr(LINES], alloc();

Notice that the type being declared in a typedef appears in the posi-
tion of a variable name, not right after the word typedef. Syntactically,
typedef is like the storage classes extern, static, etc. We have also
used upper case letters to emphasize the names.

As a more complicated example, we could make typedef’s for the tree
nodes shown earliet in this chapter:

typedef struct tnode | /* the basic node */
char *word; /* points to the text */
int count; /* number of occurrences +/
struct tnode wleft; F* left child =/
struct tnode #right; /x right child =/

} TREENODE, #TREEPTR;

This creates two new type keywords called TREENODE (a structure) and
TREEPTR {(a pointer to the structure}). Then the routine talloc could

CHAFPTER & STRUCTURES 141

become

TREEPTR talloc(}
(
char +#alloc{);

return{ (TREEPTR) alloc({sizeof (TREENCDE)));
1

It must be emphasized that a typedef declaration does not create a
new type in any sense; it merely adds a new name for some existing type.
Nor are there any new semantics: variables declared this way have exactly
the same properties as variables whose declarations are spelled out explicitly.
In effect, typedef is like #define, except that since it is interpreted by
the conipiler, it can cope with textual substitutions that are beyond the capa-
bilities of the C macro preprocessor. For example,

typedef int (*PFI)();

creates the type PFI, for ““pointer to function returning int,”” which can be
used in contexts like

FFI strcmp, numemp, sSwap;

in the sort program of Chapter 5.

There are two main reasons for using typedef declarations. The first
is 10 parameterize a program against portability problems. If typedef's are
used for data types which may be machine dependent, only the typedef’s
need change when the program is moved. One common situation is to use
typedef names for various integer quantities, then make an appropriate set
of choices of short, int and long for each host machine.

The second purpose of typedef’s is to provide better decumentation
for a program — a type called TREEPTR may be easier to understand than
one declared only as a pointer to a complicated structure.

Finally, there is always the possibility that in the future the compiler or
some other program such as fini may make use of the information contained
in typedef declarations to perform some extra checking of a program.

e JILI 'Nll ‘L‘_II I 1K {] | ol Sk B - AT T i’ll"'l _|I 5
i ,L.n,‘y ah e m ' ‘.'.ﬂ“. .tnj...lhh":“* g artihe B3 Sl U Aveg
B L e ,,, PP T A = L e e

F, i i Jl'l]l ' ‘F - —|1 et |) l,_\:-'i‘ A T‘ :\: '-:: E | FI.
.’-l[v a0 . T FI'_J\IT f'l‘“ﬁy_,.u”l_“']l“” |‘| T4 i [-dl I5 ?E‘LH -|:
'|L| I\It‘! | a [ll'l L '-ql_ e] "l |}I'|i- ‘:' ! 1 -""'d"

3 . N e . Syt BN o EINR R it

AT e e e e : } |_ .
. 11:1151;';_ i |“.ﬁ|: s k.;.l = 1 3I,l 1;h o = B 18 1_|I ;
. T L-...) 1
u#qu r'f)‘ 'l.'] I_|l i 'i' I "u_:‘.f'- J'J 1‘ ia F:/l_ rll‘ i *f_§ :_._
g A ',-2‘ w'd 10 =L = T T r_l\
_'[Iﬂz == -'| 5 ! p -{‘l
S s s R

[| [A = S = B i ",

- J .E") = h i - s

ﬂ:"‘m‘hﬁ ‘ "I.‘ i |'\—‘H"T!“. I =ef Nind 2l 'rﬂ
o 1‘.;1 ﬂl"-"u Sl 3 LTt "w‘: IS 'y '-|_1' B e
hd—n',l pllp'i' ﬁfluhnrnh it f]r iy 4L, PR

] = byl - _dj"I.Hu_ R

'.',Hlli &-.—U“ I'm-ﬂ' "-u'j--‘ﬁ* i ST ;
. 'f . si‘n*--,]mﬁﬂﬂ' L U.Mlﬂ: w-=-ml i
i ..cﬂ |t 'j;:.;mT_ﬁrm.f b el '\ H| --.‘.‘ ﬂ-t‘l’h o ¥ 11K
¥ -*HL NGB e § el R H‘L !;:g
r R LNl '-5-,rll~'4%ri W e T'Lh' SERE VTR L F TR
¥ ri-""iia -..‘, R e T A ’“"1“_*@‘%
l'ﬁ]_ I aiind! IN= "'.l[||_-,ll:-l.] ||_'-'|| pg Py af= g 2 H I‘MI-I:H' }
B --'i ps T DR ‘“,I'a"“' ,.p”',iar,.,,] S hppfetiuld B gt AERIRE ”'L‘E‘Iq

=1 ‘l,‘ll g 'H*'-ﬁr’,h.rl..i U‘i’hlln”-‘ﬁ T e TR o B u{r¢

r" A A A e 1 ,.,l'l'l-‘ I:"' A "ol Rl T

=1 ||I| r.' “ =,q:r~ . m' H'f o

:I-" i | LK I.L‘ P F F >'|I-|r|\’ iy -"‘l -'II‘“‘I :T p ,é
r“ll‘ll_ "lull'fhl- ‘_J W, | [:_-v v ”|‘—.- T lL ,T'_i |i R iT' ﬁ
T :.:'lil |leli'll |J-|:‘|..Tiﬂ1;ﬂ.*'l . .I" f(ii!] W‘_I,I_‘ ‘l“ ‘,.H I = Il|ll:1'=-l.r.:|::'
. W1 R X f) il 1. L i | AT =
= sl T, 2 i.r"Thl': I‘J!I:.- “_:-H S PRI D IHI'H . z:IJ
Sk i =i ." |

CHAPTER 7: INPUT AND OUTPUT

Input and output facilities are not part of the C language, so we have
de-emphasized them in our presentation thus far. Nonetheless, real pro-
grams do interact with their environment in much more complicated ways
than those we have shown before. In this chapter we will describe *‘the
standard 1/0 library,” a set of functions designed to provide a standard 1/0
system for C programs. The functions are intended to present a convenient
programming interface, yet reflect only operations that can be provided on
most modern aperating systems. The toutines are efficient enough that
users should seldom feel the need to circumvent them “*for efficiency™
regardless of how critical the application. Finally, the routines are meant to
be “*portable,”” in the sense that they will exist in compatible form on any
system where C exists, and that programs which confine their system
interactions to facilities provided by the standard library can be moved from
one system to another essentially without change.

We will not try 1o describe the entire 1/0 library here; we are more
interested in showing the essentials of writing C programs that interact with
their operating system environment.

7.1 Access to the Standard Library

Each source file that refers to a standard library function must contain
the line

_#include <stdio.h>

near the beginning. The file stdio.h defines certain macros and variables
used by the 1/0 library. Use of the angle brackets < and > instead of the
usual double quotes directs the compiler Lo search for the file in a directory
containing standard header information (on UNIX, typically /usrfinclude).

Furthermore, it may be necessary when loading the program to specify
the library explicitly; for example, on the PDP-i1 UNIX system, the com-
mang to compile a program would be

143

144 THE € PROGRAMMING LANGUAGE CHAPTER 7

cc source files, efc. -15

where —18 indicates loading from the standard library. (The character 1 is
the letter €ll.)

7.2 Standard Input and OQutput — Getchar and Putchar

The simplest input mechanism is to read a character at a time from the
“‘standard input,”” generally the wuser’s terminal, with getchax.
getchar {) returns the next input character each time it is called. In most
environments that support C, a file may be substituted for the terminal by
using the < convention: if a program preg uses getchar, then the com-
mand line

prog <infile

causes prog to read infile instead of the terminal. The switching of the
input is done in such a way that prog itself is oblivious to the change; in par-
ticular, the string ‘“‘<infile’ is not included in the command-line argu-
ments in argv. The input switching is also invisible if the input comes
from another program via a pipe mechanism; the command line

otherprog | prog

runs the two programs otherprog and prog, and arranges that the standard
input for prog comes from the standard output of etherprog.

getchar returns the value EQOF when it encounters end of file on what-
ever input is being read. The standard library defines the symbolic constant
ECF 1o be -1 (with a #define in the file stdio.h), but tests should be
written in terms of EQF, not -1, 50 as to be independent of the specific
value.

For output, putchar (c) puts the character ¢ on the “standard out-
put,’”” which is also by default the terminal. The output can be directed to a
file by using »: if prog uses putchar,

prog »outfile

will write the standard output onto outfile instead of the terminal. On
the UNIX system, a pipe can also be used:

prog | anothexprog

puts the standard output of prog into the standard input of otherprog. Again,
prog is not aware of the redirection.

QOutput produced by printf also finds its way to the standard output,
and calls to putchar and printf may be interleaved.

A surprising number of programs read only one input stream and write
only one output stream; for such programs I/0 with getchar, putchar,
and printf may be entirely adequate, and is certainly enough to get

CHAPTER 7 INPUT AND OUTPUT 145

started. This is particularly true given file redirection and a pipe facility for
connecting the output of one program te the input of the next. For exam-
ple, consider the program Jower, which maps its input to lower case:

¥include <stdio.h>

main(} /* convert input to lower case #/
{
int ¢;
while ((c = getchar{)) != EOF}
putchar (isupper (c) ? tolower(c) : ¢);

}

The “‘functions” isupper and tolower are actually macros defined.in
stdioc.h. The macro isupper tests whether its argumernt is an upper
case letter, returning non-zero if it is, and zero if not. The macro tolower
converts an upper case letter to lower case. Regardless of how these func-
tions are implemented on a particular machine, their external behavior is the
same, $o programs that use them are shielded from knowledge of the char-
acter set.

To convert multiple files, you can use a program like the UNIX utility
cat to collect the files:

cat filel file2 ... | lower >output

and thus avoid learning how to access files from a program. {(car is
presented later in this chapter.)

As an aside, in the standard 1/0 library the *‘functions” getchar and
putchar can actually be macros, and thus avoid the overhead of a function
call per character. We will show how this is done in Chapter 8.

7.3 Formatted Output — Printf

The two routines printf for output and scanf for input (next sec-
tion} permit translation to and from character representations of numerical
quantities. They also allow generation or interpretation of formatted lines.
We have used printf informally throughout the previous chapiers; here is
a more complete and precise description.

printf(control, argl, arg2, ...)

printf converts, formats, and prints its arguments on the standard output
under control of the string control. The control string contains two types
of objects: ordinary characters, which are simply copied to the output
stream, and conversion specifications, each of which causes conversion and
printing of the next successive argument to printt.

146 THE C PROGRAMMING LANGUAGE CHAPTER 7

Each conversion specification is introduced by the character % and ended
by a conversion character. Between the % and the conversion character
there may be:

A minus sign, which specifies left adjustment of the converted argument
in its field.

A digit string specifying a minimum field width. The converted number
will be printed in a field at least this wide, and wider if necessary. If the
converted argument has fewer characters than the field width it will be
padded on the left (or right, if the lefl adjustment indicator has been
given) to make up the field width. The padding character is blank nor-
mally and zero if the field width was specified with a leading zero (this
zero does not imply an octal field width).

A period, which separates the field width from the next digit string.

A digit string (the precision), which specifies the maximum number of
. characters to be printed from a string, or the number of digits to be
printed to the right of the decimal point of a float or double.

A length modifier 1 (letier ell), which indicates that the corresponding
data item is 2 long rather than an int.

The conversion characters and their meanings are:

d The argument is converied to decimal notation.

o The argument is converted to unsigned octal notation
(without a leading zero).

% The argument is converted 10 unsigned hexadecimal
notation (without a leading 0x).

u The argument is converted to unsigned decimal nota-
tion.

¢ The argument is 1aken to be a single character.

s The argumenl is a string; characters from the string are
printed unti! a null character is reached or until the
number of characters indicated by the precision
specification is exhausted.

e The argument is taken to be a float or double and
converted to decimal notation of the form
[-¥m.nnnnnnE [+) xx where the length of the string
of n’s is specified by the precision. The defauit preci-
sion is 6.

CHAPTER 7 INPUT AND OUTPUT 147

£ The argument is taken to be a float or double and
converled to decimal notation of the form
(~1mmm.nnnnn where the length of the string of n's
is specified by the precisien. The default precision is 6.
Note that the precision does not determine the number
of significant digits printed in £ format.

g Use %e or %f, whichever is shorter; non-significant
2eros are not printed.

If the character after the % is not a conversion character, that character is
printed; thus % may be printed by %%.

Most of the format conversions are obvious, and have been illustrated
in earlier chapters. One exception is precision as it relates to strings. The
following table shows the effect of a variety of specifications in printing
“hello, world™> (12 characters), We have put colons around each field so
yOUu ¢an see its extent.

:%10s: thelleo, world:

:%—10s: thello, world:

1%20s: H hello, world:

1%—2035: thello, world c : A
1%20.10s: 3 hello, wor: , . .7 Wl
%—20.10s: thello, wor i :
1%.108: thello, wor: i I

A warning: printf uses its first argument to decide how many argu-
ments follow and what their types are. It will get confused, and you will get
nonsense answers, if there are not enough arguments or if they are the
wrong type.

Exercise 7-1. Write a program which will print arbitrary input in a sensible
way. As a minimum, it should print non-graphic characters in octal or hex
(according to local custom), and fold long lines. 0]

7.4 Formatted Input — Scanf

The function scanf is the input analog of printf, providing many of
the same conversion facilities in the opposite direction.

scanf (control, argl, arg2, ...)

scanf reads characters from the standard input, interprets (hem according
to the format specified in control, and stores the results in the remaining
arguments. The control argument is described below; the other arguments,
each of which must be a pointer, indicate where the corresponding converted
input should be stored.

148 THE C PROGRAMMING LANGUAGE

The control string usuatly contains conversion specifications, which are
used 1o direct interpretation of input sequences.

contain:

Blanks, tabs or newlines {**white space characters™), which are ignored.

Ordinary characters (not %) which are expected to match the next non-

while space character of the input stream.

Conversion specifications, consisting of (he character %, an optional
assignment suppression character #, an optional number specifying a

maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field.
Normally the result is placed in the variable pointed to by the corresponding
argument. If assignment suppression is indicated by the * character, how-
ever, the input field is simply skipped; no assignment is made. An input
field is defined as string of non-white space characters; it extends either to
the next white space character or until the field width, if specified, is
exhausted. This implies that scanf will read across line boundaries to find

its input, since newlines are white space.

The conversion character indicates ihe interpretation of the input field,
the corresponding argument must be a pointer, as required by the call by

value semantics of C. The following conversion characters are legal:

d

o]

a decimal integer is expected in the input, the
corresponding argument should be an integer poinler.
an octal integer (with or without a leading zero) is
expected in the input; the corresponding argument
should be a integer pointer.

a hexadecimal integer (with or without a leading 0x) is
expected in the input; the corresponding argument
should be an integer pointer.

a short integer is expected in the input, the
corresponding argument should be a pointer to a

short integer.
a single character is expected; the corresponding argu-
ment should be a character pointer; the next input

character is placed at the indicated spot. The normal
skip over while space characters is suppressed in this
case; to read the next non-white space character, use
%1 s.

CHAPTER 7

The control string may

CHAPTER 7 INPUT AND QUTPUT 149

s a character string is expected; the corresponding argu-
ment should be a character pointer peinting to an array
of characters large enough to accept the string and a
terminating \0 which will be added.

£ a floating point number is expected; the corresponding
argument should be a pointer to a float. The conver-
sion character e is a synonym for £. The input format
for £loat’s is an opiional sign, a string of numbers
possibly containing a decimal point, and an optional
exponent field containing an E or ¢ followed by a possi-
bly signed integer.

The conversion characters 4, ¢ and x may be preceded by 1 (letter ell)
to indicate that a pointer to long rather than int appears in the argument
list. Similarly, the conversion characters e or £ may be preceded by 1 1o
indicate that a pointer to double rather than float is in the argument list.

For example, the call

int 1i;
float x;

char name[50];
scanf {"%d %f %s", &i, ax, name);

with the input line
25 54.32E-1 Thompson

will assign the value 25 to i, the value 5432 to x, and the string
“"Thompson", properly terminated by \0, to name. The three input fields
may be separated by as many blanks, tabs and newlines as desired. The call

int i;

float x;

char namef(50];

scanf ("%24 %f %*d %2s", &i, &x, name);

with input
56782 0123 45a72

will assign 56 to i, assign 789.0 to x, skip over 0123, and place the string
745" in name. The next call to any input routine will begin searching at
the letter a. In these two examples, name isa pointer and thus must nor bg
preceded by a &.

As another example, the rudimentary calculator of Chapter 4 can now
be written with scanf to do the input conversion:

150 THE C PROGRAMMING LANGUAGE CHAFPTER 7

#include <stdio.h>

main() /% rudimentary desk calculator */
{
double sum, Vv;

sum = 0;
while (scanf ("%lf", av) != ECF]
printf ("\t%.2f\n", sum += Vv);
H

scanf stops when it exhausts its conirol string, or when some input
fails to match the control specification. It returns as its value the number of
successfully matched and assigned input items. This can be used to decide
how many input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input characier does
not maich the first specification in the control string. The next call to
scanf resumes searching immediaiely after the last character already
returned.

A final warning: the argumenis to_scanf_must be pointers. By far the
most COMITION €rToT is Writing

scanf ("%d", n};
instead of

scanf ("%d", &n});

7.5 In-memory Format Conversion

The functions scanf and printf have siblings called sscanf and
sprintf which perform the corresponding conversions, but operaie on a
string instead of a file. The general formal is

sprintf (string, control, argl, arg2, ...)
sscanf (string, control, argl, arg2, ...)

sprintf formats the arguments in argl, arg2, ctc., according to
control as befare, but places the result in string instead of on the stan-
dard output. Of course string had better be big enough to receive the
tesult. As an example, if name is a character array and n is an integer, then

sprintf (name, "temp%d", n);

creates a string of the form tempnan in name, where #nn is the value of
n.

sscanf does the reverse conversions — it scans the string according
to the format in controil, and places the resulting values in arg1. arg2,
etc. These arguments must be pointers. The call

CIIAPTER 7 INPUT AND QUTPUT 151

sscanf (name, "temp%d", &n);
sets n to the value of the string of digits following temp in name.

Exercise 7-2. Rewrite the desk calculator of Chapter 4 using scanf and/or
sscanf to do the input and number conversion. O

7.6 File Access

The programs written so far have all read the standard input and written
the standard output, which we have assumed are magically pre-defined for a
program by the local operating system.

The next step in 1/0 is to write a program that accesses a file which is
not already connected to the program. One program that clearly illustrates
the need for such operations is car, which concatenates a set of named files
onto the standard output. ¢a7 is used for printing files on the terminal, and
as a general-purpose input collector for programs which do not have the
capability of accessing files by name. For example, the command

cat x.c y.c

prints the contents of the files x. < and v .c on the standard output.

The question is how to arrange for the named files to be read — that is,
how to connect the external names that a user thinks of to the statements
which actually read the data.

The rules are simple. Before it can be read or written a file has to be
opened by ihe standard library function fopen, fopen takes an external
name (like x.c or y.c), does some housekeeping and negotiation with the
operating system (details of which needn’t concern us), and returns an
internal name which must be used in subsequent reads or write of the file,

This internal name is actually a pointer, called a file pointer, to a siruc-
ture which contains information about the file, such as the location of a
buffer, the current character position in the buffer, whether the file is being
read or written, and the like. Users don’t need to know the details, because
part of the standard 1/O definitions obtained from stdio.h is a structure
definition called FILE. The only declaration needed for a file pointer is
exemplified by

FILE xfopen(}, *£p;

This says that £p is a pointer to a FILE, and fopen returns a pointer (o a
FILE. Notice that FILE is a type name, like int, not a structure tag; it is
implemented as a typedef. (Details of how this all works on the UNIX
system are given in Chapter §.)

The actual call to fopen in a program is

fp = fopen(name, mode);

152 THE C PROGRAMMING LANGUAGE CHAPTER 7

The first argument of fopen is the name of the file, as a character string.
The second argument is the mode, also as a character string, which indicates
how one intends to use the file. Allowable modes are read (vx"), write
("w"), or append {(ra"),

If you open a file which does not exist for writing or appending, it is
created (if possible). Opening an existing file for writing causes the old con-
tents to be discarded. Trying to read a file that does not exist is an error,
and there may be other causes of error as well (like trying to read a file
when you don’t have permission). If there is any error, fopen will return
the null pointer value NULL {which for convenience is also defined in
stdio.h).

The next thing needed is a way to read or write the file once it is open.
There are several possibilities, of which getc and putc are the simplest.
getc returns the next character from a file; it needs the file pointer to tell it
what file. Thus

c = getc{fp}

places in ¢ the next character from the file referred to by-£p, and EOF when
it reaches end of fite.
putc is the inverse of gete:

putc{c, £fp)

puts the character ¢ on the file £p and returns ¢. Like getchaxr and
putchar, getc and putc may be macros instead of functions,

When a program is started, three files are opened automatically, and file
pointers are provided for them. These files are the standard input, the stan-
dard output, and the standard error output; the corresponding file pointers
are called stdin, stdout, and stderr. Normally these are all connected
to the terminal, bul stdin and stdout may be redirected to files or pipes
as described in section 7.2.

getchar and putchar can be defined in terms of getc, putc,
stdin and stdout as follows:

#define getchar({} getc{stdin}
#define putchar{c) puteic, stdout)

For formatted input or output of fies, the functions f£scanf and
fprintf may be used. These are identical to scanf and printf, save
that the first argument is a file pointer that specifics the file to be read or
written; the control string is the second argument. B

With these preliminaries out of the way, we are now in a posilioﬁm to
write the program car to concatenate files. The basic design is one that has
been found convenient for many programs: if there are command-line argu-
ments, they are processed in order, If there are no arguments, the standard

CHAPTER 7 INPUT AND QUTPUT 153

input is processed. This way the program can be used stand-alone or as part
of a larger process.

#include <stdio.h>

main{arge, argv) /% cat: concatenate files */
int argc;
char wargvl[];

{
FILE »fp, *fopenl();

if (arge == 1) /% no args! copy standard input =/
filecopy (stdin);
else
while {-—argc > 0}
if ({fp = fopen{»x++argv, "r")) == NULL) |{
printf(“"cat: can‘t open %s\n", *argv);
break;
1 else |
filecopy (fp);
fclose (fp);

filecopy (fp) /* copy file fp to standard output */
FILE *fp;
{

int ¢;

while ((c = getc(fp})) != ECF)
putc (¢, stdout);
)

The file pointers stdin and stdout are pre-defined in the 1/Q library as
the swwndard inpul and standard output; they may be used anywhere an
object of type FILE * can be. They are constants, however, nor variables,
so don’t try to assign to them.

The function fclose is the inverse of fopen; it breaks the connection
between the file pointer and the external name that was established by
fopen, freeing the file pointer for another file. Since most operating sys-
tems have some limit on the number of simultaneously open files that a
program may have, it’s a good idea to free things when they are no longer
needed, as we did in cer. There is also another reason for fclose on an
output file — it flushes the buffer in which putc is collecting outpul.
(felose is called automatically for each open file when a program ter-
minates normally.)

154 THE € PROGRAMMING LANGUAGE CHAPTER 7

7.7 Error Handling — Stderr and Exit

The treatment of errors in cat is not ideal. The trouble is that if one of
the files can’t be accessed for some reason, the diagnostic is printed at the
end of the concatenated output. That is acceptable if that cutput is going 1o
a terminal, bul bad if it’s going into a file or into another program via a
pipeline.

To handle this situation better, a second output file, called stderx, is
assigned to a program in the same way that stdin and stdeut are. If at
all possible, output written on stderr appears on the user’'s terminal even
if the standard output is redirected.

Let us revise car to write its error messages on the standard error file.

#include <stdio.h>

mainlarge, argv} /* cat: concatenate files #*/
int argce;
char *argv[];
{
FILE *fp, *fopenl();

if (arge == 1} /» no args; copy standard input =/
filecopy{stdin};
else
while (-—argc > 0}
if {(fp = fopen(*++argv, "r")) == NULL] |
fprintf {stderr,
Y'cat: can’‘t open %s\n", xargv);
exit{1);
} else |
filecopy(fp);
fclose {£p);

exit{0);
)

The program signals errors two ways. The diagnostic output produced
by fprintf goes onto stderr, so it finds its way 16 the user’s terminal
instead of disappearing down a pipeline or into an output file.

The program also uses the standard library function exit, which ter-
minates program execution when it is called. The argument of exit is
available 1o whatever process called this one, so the success or failure of the
program can be tested by another program that uses this one as a sub-
process. By convention, a return value of 0 signals that all is well, and vari-
ous non-zero values signal abnormal situations.

exit calls fclose for each open output file, to flush out any buffered
output, then calls a routine named _exit. The function _exit causes

CHAPTER 7 INPUT AND QUTPUT 155

immediate termination without any buffer flushing; of course it may be
called directly if desired.

7.8 Line Input and Output

The standard library provides a routine fgets which is quite similar to
the getline function that we have used throughout the book. The call

fgets{line, MAXLINE, fp)

reads the next input line (including the newline) from file £p into the char-
acter array line; at mosl MAXLINE-1 characlers will be read. The result-
- ing line is terminated with \0, Normally fgets returns line: on end of
file it returns NULL. {Our getline returns the line length, and zero for
end of file.)

For output, the function fputs writes a string (which need not contain
a newline) to a file:

fputs(line, fp)

To show that there is nothing magic about functions like fgets and
fputs, here/they are, copied directly from the standard 1/0 library:

#include <stdio.h>

char *fgets(s, n, iop) /% get at most n chars from iop */
char =*s;
int n; 2
register FILE #*iop;
{
register int &
register char #c¢s;

cs = s}
while {~-n > 0 && {c = getc{iop)) != EOF)
if ({xcs++ = ¢) == '\n’) i

break;
#cs = '\NOY;

return((c == EQF && ¢g == s} ? NULL : s);

156 THE C PROGRAMMING LANGUAGE CHAPTER 7

fputs (s, iop) /+* put string s on file iop =*/
register char =*s;
register FILE «iop;
{
register int c;

while {c = ®g++)
putcie, iop);
H

Exercise 7-3. Write a program to compare two files, printing the first line
and character position where they differ. O

Exercise 7-4. Modify the pattern finding program of Chapter 5 to take its
input from a set of named files or, if no files are named as arguments, from
the standard input. Should the file name be printed when a matching line is
found? O

Exercise 7-5. Write a program to print a set of files, starting each new ong
on a new page, with a litle and a running page count for each file. O

7.9 Some Miscellaneous Functions

The standard library provides a variety of functions, a few of which
stand oul as especially useful. We have already mentioned the string func-
tions strlen, strcpy, strcat and stremp. Here are some others.

Character Class Testing and Conversion

Several macros perform character tests and conversions:

isalphalc) non-zero if ¢ is alphabetic, 0 if not.
isupper(¢) non-zero if c is upper <case, 0 if not.

iglower (¢} non-zero if c is lower case, 0 if not.
isdigit(c) non-zero if ¢ is digit, 0 if not.

isspace(c) non-zero if ¢ is blank, tab or newline, Q if not.
toupper (¢} convert ¢ 1o upper case.

tolower {c} convert ¢ Lo lower case.

Ungetc

The standard library provides a rather restricted version of the function
ungetch which we wrote in Chapter 4; it is called ungete.

ungete (¢, fp)

pushes the character ¢ back onto file £p. Only one character of pushback is
allowed per file. ungetc may be used with any of the input functions and

CHAPTER 7 INPUT AND GUTPUT 137

macros like scanf, gete, or getchar.

System Call -

The function system(s) executes the command contained in the char-
acter string s, then resumes execution of the current program. The con-
tents of s depend strongly on the local operating system. ~As a trivial exam-

ple, on UNIX, the line
system("date"};

causes the program date to be run; it prints the date and time of day.

Storage Management

The function calloc is rather like the alloc we have used in previ-
ous chapters.

calloc(n, sizeof (ohject})

returns a pointer to enough space for n objects of the specified size, or
NULL if the request cannot be satisfied. The storage is initialized to zero.

The pointer has the proper alignment for the abject in question, but it
should be cast into the appropriate type, as in

char *calloc();
int +ip;

ip = {int *)} calloc(n, sizeof(int)};

cfree{p) frees the space pointed to by p, where p is originally
obtained by a call to calloc. There are no restrictions on the order in
which space is freed, but it is a ghastly error to free something not ebtained
by calling calloc.

Chapter 8 shows the implementation of a storage allocator like calloc,
in which allocated blocks may be freed in any order.

"Hﬂ:"" Gt SR el B A, SR . T

t‘r‘i /ﬂi&-ﬁ d-#% 11' I Jﬁl'b’ 'ﬂ'ﬁ!"&]'wl_!;%':,rp'llq;II_ML;-‘I.E\:,I}"_,I e) _'trh_.ql'h':'l'

A e ;F.‘r:if_\ BT L
'j‘l e A ”Ill- ,Jllu"l : ||||h”|

W el It e hh‘.i

hnll B -H-Lu' Pi. ; L,nrﬁﬁg
'\' lI:--ll.ll—'hlﬂ'l- . '

‘i" (k 1ol

"~ L J.J -’11_ .'l'uu o e
,r.'|1 Ly lm,e,im 3 w(;
" +_ - |v|o Ij_ ’Jl I‘
. -;ET’ -Il:" . I '|I JIIILI tll Hh-(

ey R % |? & 4=
. T |‘ . 1
4 Sl i L L_-Il:f.i{

A E o :

=31 " I, _m& ‘ﬁ"*llll'!. A'J.Il‘l"l_l . e 1]-'#

sl I_l. I JFb-u IF‘. |h\.‘ 2 . ".'-'l[i
= L!. 1f*_'| ¥ 11;\‘- L‘I II‘:JHI-III 120 e "ﬁ

Sha i o 25

.‘-.'.5!'-,.,‘- A "IJ

4 h | ' ! '._'LT ﬁgl I|'|'|
& : "'”I_' N L T *:’ |
s _%ﬁ' iﬂhl’ ol wio T 'l"' '” s | “ll‘
lﬁ"'i_‘n.‘ilﬂd&i'l'u"!p”“; |'I 3. M'rlfjl l!':l ; |
L Al S 4 v \.hl' I| .
I_'.'l“ ‘III- - Il|,.

i) T .‘j-| <
gt R‘
AR

|_uT-|-!" ||_ |'_ :

CHAPTER 8: THE UNIX SYSTEM INTERFACE

The material in this chapter is concerned with the interface between C
programs and the UNIXt operating system. Since most C users are on UNIX
systems, this should be helpful 1o a majority of readers. Even if you use C
on a different machine, however, you should be able to glean more insight
into C programming from studying these examples.

The chapter is divided into three major areas: input/output, file system,
and a storage allocator. The first two parts assume a modest familiarity with
the external characteristics of UNIX.

Chapter 7 was concernad with a system interface that is uniform across a
variety of operating systems. On any particular system the routines of the
standard library have to be written in terms of the 1/O facilities actually
available on the hosi system. In the next few sections we will describe the
basic system entry points for 1/0 on the UNIX operating system, and illus-
trate how parts of the standard library can be implemented with them.

8.1 File Descriptors

In the UNIX operating system, all input and output is done by reading or
writing files, because all peripheral devices, even the user’s terminal, are
files in the file systerm. This means that a single, homogeneous interface
handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary
to inform the system of your intent to do so, a process called *‘opening™ the
file. If you are going to write on a file it may also be necessary to create it.
The system checks your right to do so (Does the file exist? Do vou have
permission Lo access it?), and if all is well, returns 1o the program a small
positive integer called a file descriptor. Whenever [/O is to be done on the
file, the file descriptor is used instead of the name to identify the file. (This
is roughly analogous to the use of READ(S,...) and WRITE(6,...} in Fortran.)
All information about an open file is maintained by the system; the user

¥ UNIX is a Trademark of Bell Laboratorics.

159

160 THE C PROGRAMMING LANGUAGE CHAPTER 8

program refers to the file only by the file descriptor.

Since input and output involving the user’s terminat is so common, spe-
cial arrangements exist to make this convenient. When the command inter-
preter (the **shell’’} runs a program, it opens three files, with file descriptors
0, 1, and 2, called the standard input, the standard output, and the standard
error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do
terminal I/O without worrying about opening the files.

The user of a program can redirect 1/0 to and from files with < and >

prog <infile »outfile

In this case, the shell changes the default assignments for file descriptors 0
and -1 from the terminal to the named files. Normally file descriptor 2
remains attached to the terminal, so error messages can go there. Similar
observations hold if the input or output is associated with a pipe. In all
cases, it must be noted, the file assighments are changed by the shell, not by
the program. The program does not know where its inpul comes from nor
where its output goes, so long as it uses file 0 for input and 1 and 2 for out-
put.

8.2 Low Level 1/O — Read and Write

The lowest level of 1/0 in UNIX provides no buffering or any other ser-
vices; it is in fact a direct entry into the operating system. All input and
output is done by two functions called read and write. For both, the first
argument is a file descripior. The second argument is a buffer in your pro-
gram where the data is to come from or go to. The third argument is the
number of byies to be iransferred. The calls are

n_read = read(fd, buf, n);

n_written = write(fd, buf, n});

Each call returns a byte count which is the number of bytes actually
transferred. On reading, the number of bytes returned may be less than the
number asked for. A return value of zero bytes implies end of file, and —1
indicates an error of some sort. For writing, the returned value is the
number of bytes actually written; it is generally an error if this isn’t equal to
the number supposed to be written,

The number of bytes 10 be read or written is quite arbitrary. The two
most common values are 1, which means one character at a time
{*‘unbuffered’’}, and 512, which corresponds to a physical blocksize on
many peripheral devices, This latter size will be most efficient, but even
character at a time I/0 is not inordinately expensive.

CHAPTER 8 THE UNIX SYSTEM INTERFACE 161

Putting these facts together, we can write a simple program to copy its
input to its cutput, the equivalent of the file copying program written for
Chapter 1. In UNIX, this program will copy anything to anything, since the
input and output can be redirected to any file or davice,

$#define BUFSIZE 512 /# best size for PDP-11 UNIX »/

main(} /% copy input to output »/
{

char buf [BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write (1, buf, n);
}

If the file size is nol a multiple of BUFSIZE, some read will return a
smaller number of bytes to be written by write; the next call to read after
that will return zero.

It is instructive to see how read and write can be used to construct
higher level routines like getchar, putchar, etc. For example, here is a
version of getchar which does unbuffered input,

#define CMASK 0377 /+ for making char's > 0 %/

getchar() /% unbuffered single character input =/

(

char c;

return((read (0, &c, 1) > D) ? ¢ & CMASK : EOF);
}

¢ must be declared char, because read accepts a character pointer. The
character being returned must be masked with 0377 to ensure that it is
positive; otherwise sign extension may make it negative. (The constant
0377 is appropriate for the PDP-11 but not necessarily for other machines.)

The second version of getchar does input in big chunks, and hands
out the characters one at a time.

162 THE C PROGRAMMING LANGUAGE CHAPTER §

#define CMASK 0377 /+ for making char’s > { =/
#define BUFSIZE 512

getchar() /+ buffered version #/

{

static char buf [BUFSIZE] ;
static char sbufp = buf;
static int n=20;

if (n == 0) { /% buffer is empty =/
n = read {0, buf, BUFSIZE);
bufp = buf;
}
return{{-—-n »= 0} ? wbufp++ & CMASK : EQF);

8.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must
explicitly open files in order to read or write them. There are two system
entry points for this, open and creat [sicl.

open is rather like the fopen discussed in Chapter 7, except that
instead of returning a file pointer, it returns a file descriptor, which is just an
int.

int £4;

fd = openiname, rwmode);

As with fopen, the name argument is a character string corresponding to
the external file name. The access mode argument is different, however:
rwmode 15 O for read, 1 for write, and 2 for read and write access. open
returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point
creat is provided to create new files, or 1o re-write old enes.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and —1
if not. 1If the file already exists, creat will truncate it to zero length; it is
not an error to creat a file that already exists.

If the file is brand new, creat creates it with the prorection mode
specified by the pmode argument. In the UNIX file system, there are nine
bits of protection information associated with a file, controlling read, write
and execute permission for the owner of the file, for the owner’s group, and
for all others. Thus a three-digit octal number is most convenient for speci-
fying the permissions. For example, 0755 specifies read, write and execute

CHAPTER 8 THE UNIX SYSTEM INTERFACE 163

permission for the owner, ind read and execute permission for the group
and everyone else,

To illustraie, here is a simplified version of the UNIX ulility cp, a pro-
gram which copies one file to another, (The main simplification is that our
version copies only one file, and does nol permit the second argument to be
a directory.)

#define NULL 0
#define BUFSIZE 512
fdefine PMODE 0644 /% RW for owner, R for group, others =/

main{argc, argv) /% cp; copy £1 to f2 =/
int argce;
char xargv(];
{
int £ £2, n;
char buf [BUFSIZE];

if {argc l= 3)
error ("Usage: cp from to", NULL);

if ((f1 = open{argv(1], 0)) == -1}
error ("cp: can’'t open %s", argv([1]};
if ((f2 = creat(argv([2], PMODE)} == -1)

error {("cp: can‘t create %s", argv([2]);

while {{n = read(f1, buf, BUFSIZE)) > 0]
if (write(f2, buf, n} l= n)
error("ep: write error™, NULL);
exit{0);

errcr(sl, s2) /% print error message and die */
char #sl1, *s2;
{
printf{sl, s2);
printf {("\n"};
exit(1);
H

There is a limit {typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly, any program which intends o
process many files must be prepared to re-use file descriptors. The routine
close breaks the connection between a file descriptor and an open file, and
frees the file descriptor for use with some other file. Termination of a pro-
gram via exit or relurn from the main program closes all open files.

The function unlink (filename) removes the file filename from
the file system.

164 THE ¢ PROGRAMMING LANGUAGE CHAPTER #

Exercise 8-1. Rewrite the program cat from Chapter 7 using read,
write, open and ¢lose instead of their standard library equivalents. Per-
form experiments to determine the relative speeds of the two versions. D

8.4 Random Access — Seek and Lseek

File I/0 is normally sequential: each read or write takes place at a
position in the file right after the previous one. When necessary, however,
a file can be read or written in any arbitrary order. The system call 1seek
provides a way to move arcund in a file without actually reading or writing:

lseek(fd, cffset, originj};

forces the current position in the file whose descriptor is £4 to move 1o
position offset, which is taken relative to the location specified by
origin. Subsequent reading or writing will begin at that pasition.
offset is a long, fd and origin are int’s. origincanbe 0, 1, or 2
to specify that offset is to be measured from the beginning, from the
current position, or from the end of the filc respectively. For example, to
append to a file, seek to the end before writing:

1seek (fd, 0L, 2);
To get back to the beginning (“‘rewind’"),
lseekx (fd, OL, 0);

Notice the OL argument; it could also be written as (long) 0.

With 1seek, it is possible to treat files more or less like large arrays, at
the price of slower access. For example, the following simple function reads
any number of bytes from any arbitrary place in a file.

get{fd, pos, buf, n) /+ read n bytes from position pos #*/
int fd, n;
long pos;
char *buf;
{
lseek(fd, pos, 0); /% get to pos =*/
returnf{read{(fd, buf, n));

]

In pre-version 7 UNIX, the basic entry point to the /0 system is called
seek. seek is identical to lseek, except that its of fset argument is an
int rather than a long. Accordingly, since PDP-11 integers have only 16
bits, the of £set specified for seek is limited to 65,535, for this reason,
origin values of 3, 4, 5 cause seek to multiply the given offset by 512
(the number of bytes in one physical block) and then interpret origin as.if
it were 0, 1, or 2 respectively. Thus to get to an arbitrary place in a large
file requires two secks, first one which selects the block, then one which has

CHAPTER & THE UNIX S5YSTEM INTERFACE 165

origin equal to 1 and moves to the desired byte within the block.

Exercise 8-2. Clearly, seek can be written in terms of lseek, and vice
versa. Write each in terms of the other. O

8.5 Example — An Implementation of Fopen and Geic

Let us illusirate how some of these pieces fit together by showing an
implementation of the standard library routines fopen and gete.

Recall that files in the standard library are described by file pointers
rather than file descriptors. A file pointer is a pointer to a structure that
contains several pieces of information about the file: a pointer to a buffer, so
the file can be read in large chunks; a count of the number of characters left
in the buffer; a pointer to the next character position in the buffer; some
flags describing read/write mode, etc.; and the file descriptor.

The data structure that describes a file is contained in the file stdio.h,
which must be included (by #include) in any source file that uses rou-
tines from the standard library. It is alse included by functions in that
library. In the following excerpt from stdio.h, names which are intended
for use only by functions of the library begin with an underscore so they are
less likely to collide with names in a user’s program.

#define _BUFSIZE 512
$define _NFILE 20 /u $files that can be handled =*»/

typedef struct _iobuf {

char *_ptr; /* next character position =/
int _eont; /* number of characters left =/
char #*_base; /* location of buffer =*/
int _flag; /% mode of file access %/
int _£4; /*+ file descriptor #*/

} FILE;

extern FILE _iob[_NFILE]};

#define stdin {&_iob[0])
#define stdout {&_iob[11])
#define stderr {&_iob[2])
#define _READ 01 fw file open for reading #/

#define _WRITE 02 /® file open for writing */
#define _UNBUF 04 /* file is unbuffered */

#define _BIGBUF 010 /* big buffer allocated »/
#define _EOF 020 /« EQF has occurred on this file %/
#define _ERR 040 /#* error has occurred on this file */
#define NULL O

#define EOF (-1}

166 THE C PROGRAMMING LANGUAGE CHAPTER §

#define getcip) {(——{pl=->_cnt >= 0 \
? w{p)~>_ptr++ & 0377 : _fillbuf(p))
#define getchar{) getc(stdin)

f#define putcix,p) (—(p}l->_cnt >= 0 \
? «(p)—>_ptr++ = (x) : _flushbuf((x),p))
$define putchar (x) pute (x, stdout)

The getc macro normally just decrements the count, advances the
pointer, and returns the character. (A long #define is continued with a
backslash.) If the count goes negative, however, getc calls the function
_fillbuf to replenish the buffer, re-initialize the structure contents, and
return a character. A function may present a portable interface, yet itself
contain non-portable consiructs: gete masks the character with 0377,
which defeats the sign extension done by the PDP-11 and ensures that all
characters will be positive.

Although we will not discuss any details, we have included the definition
of pute to show that it operates in much the same way as getc, calling a
function _flushbuf when its buffer is full.

The function fopen can now be written. Most of fopen is concerned
with getting the file opened and positioned at the right place, and setting the
flag bits to indicate the proper state. fopen does not allocate any buffer
space; this is done by _fillbuf when the file is first read.

CHAPTER 8 - THE UNIX SYSTEM INTERFACE 167

$include <stdioc.h>
$define PMODE 0644 /» R/W for owner; R for others =*/

FILE »fopen(name, mode} /* open file, return file ptr */
register char #name, *mode;
{

register int £4;

regigster FILE *fp;

if (e»mode != ‘r’ && smode '= ‘W’ && w*mode I= 'a’) |
fprintf (stderr, "illegal mode %s opening %s\n",
mode, name);
exit{1);
i
for {fp = _iob; fp < _iob + _NFILE; fp++)
if ((fp-»_flag & (_READ | _WRITE)} == 0]
break; /* found free slot =/
if (fp »= _iob + _NFILE) /% no free slots =/
return (NULL) ;

if (*mode == ‘w'} /* access file »/
fd = creat(name, PMODE);
else if {*mode == rar) |
if ({fd = open{name, 1)) == -1)
fd = creatiname, PMQDE);
lseek(fd, OL, 2); -
} else
fd = cpen(name, 0);
if (fd == -1} /% couldn’t access name */
return (NULL) ;

fp->_fd = f£d;
fp->_cnt = 0;
fp->_base = NULL;
fp->_flag &= “{_READ | _WRITE);
fp->_flag |= (vmode w= ‘r'}) ? _READ : _WRITE;
return(£fp);
]

The function _fillbuf is rather more complicated. The main com-
plexity lies in the fact that _£illbuf attempis to permit access to the file
even though there may not be enough memory to buffer the I/O. If space
for a new buffer can be obtained from calloe, all is well; if not,
_fillbuf does unbuffered 1/0 using a single character stored in a private
array.

168 THE ¢ PROGRAMMING LANGUAGE CHAPTEK 8

#include <stdic.h>

_fillbuf{fp) /% allocate and fill input buffer =/

register FILE xfp;

{
static char smallbuf[NFILE]; /+ for unbuffered I1/0 #/
char =calloc(};

if ((fp-»_flag&_READ)==0 || (fp->_flag& (_EOFI|_ERR)) !=0)
return (EOF) ;
while (fp—>_base == NULL)} /* find buffer space %/

if (fp->_flag & _UNBUF) /+ unbuffered =*/
fp-»_base = &smallbuf[fp—>_£d4];
else if {(fp—>_base=calloc(_BUFSIZE, 1)) == NULL)

fp—>_flag |= _UNBUF; /% can‘t get big buf */
else
fp—>_flag |= _BIGBUF; /% got big one /
fp=->_ptr = fp->_base;
fp->_cnt = read{fp-»_£fd, fp->_ptr,
fp->»_flag & _UNBUF ? 1 : _BUFSIZE);
if {—fp-»_cnt < 0} {
if {fp->_cnt == -1)
fp-»>_flag |= _EOF;
else

fp->_flag |I= _ERR;
fp—>»_cnt = 0;
return (EQF) ;
]
return{*fp->_ptx++ & 0377); /+ make char positive »/
}

The first call to gete for a particular file finds a count of zero, which forces
acall of _fillbuf. If _fillbuf finds that the file is not open for read-
ing, it returns EQOF immediately. Qtherwise, it tries to allocate a large
buffer, and, failing that, a single character buffer, setting the buffering infor-
mation in _flag appropriately.

Once the buffer is established, _fillbuf simply calls read to fill it,
sets the count and peinters, and returns the character at the beginning of
the buffer. Subsequent calls to _fillbuf will find a buffer allocated.

The only remaining loose end is how everything gets started. The array
_iob must be defined and initialized for stdin, stdout and stderx:

FILE _iob[_NFILE] =(
{ NULL, 0, NULL, _READ, 0 }, /% stdin +#/
{ NULL, 0, NULL, _WRITE, 1 }, /* stdout =/
{ NULL, 0, NULL, _WRITE | _UNBUF, 2 } /* stderr =/

CHAPTER $ THE UNIX SYSTEM INTERFACE 169

The initialization of the _flag part of the structure shows that stdin is to
be read, stdout is to be written, and stdexrr is to be written unbuffered.

Exercigse 8-3. Rewrite fopen and _fillbuf with fields instead of explicit
bit operations. O

Exercise 8-4. Design and write the routines _flushbuf and fclose. O
Exercise 8-5. The standard library provides a function
fseek (fp, offset, crigin)

which is identical to lseek except that £p is a file pointer instead of a file
descriptor. Write £seek. Make sure that your fseek coordinates properly
with the buffering done for the other functiens of the library. O

8.6 Example — Listing Directories

A different kind of file system interaction is sometimes called for —
determining information about a file, not what it contains. The UNIX com-
mand /s (‘““list directory’’) is an example — it prints the names of files in a
directory, and optionally, other information, such as sizes, permissions, and
SC 0On.

Since on UNIX at least a directory is just a file, there is nothing special
about a command like ; it reads a file and picks out the relevant parts of
the information it finds there. Nonetheless, the format of that information
is determined by the system, not by a user program, se /s needs to know
how the system represents things.

We will illustrate some of this by writing a program called fize. fSize is
a special form of /s which prints the sizes of all files named in its argument
list. If one of the files is a directory, fSize applies itself recursively to that
directory, If there are no arguments at all, it processes the current directory.

To begin, a short review of file system structure. A directory is a file
that contains a list of file names and some indication of where they are
located. The ‘‘location’ is actually an index into another table called the
“inode table.”” The inode for a file is where all information about a file
except its name is kept. A directory entry consists of only two items, an
inode number and the file name. The precise specification comes by includ-
ing the file sys/dir.h, which contains

170 THE C PROGRAMMING LANGUAGE

#define DIRSIZ 14 F

struct direct /#* structure
{
ino_t d_ino;
char d_name (DIRSIZ];
}i

CHAPTER 8

max length of file name */

of directory entry =/

/* inode nunmber =/

/* f£ile name */

The ‘‘type’” ino_t is a typedef describing the index into the inode
table. It happens to be unsigned on PDP-11 UNIX, but this i3 not the sort
of information to embed in a program: il might be different on a different
system. Hence the typedef. A complete set of “‘system™ types is found

in sys/types.h

The function stat takes a file name and returns all of the information
in the inode for that file (or —1 if there is an error). That is,

struct stat sthuf;
char #~name;

stat (name, &stbuf);

filis the structure stbuf with the inode information for the file name. The
structure describing the value returned by stat is in sys/stat.h, and

looks like this:

struct stat /% structure

(

dev_t st_dev; g
inc_t st_ino} /%
short gt_mode; /=
short st_nlink; /=
short st_uid; f*
short st_gid; S *
dev_t st_rdev; /*
off_t st_size; J/*
time_t st_atime; /#*
time_t st_mtime; /%
time_t st_ctime; /%

Vi

returned by stat */

device of inode «/

inode number */

made hits »/

number of links to file =/
owner’'s userid =/

owner's group id =/

for special files x/

file size in characters =/
time last accessed */

time last modified =/

time originally created =%/

Most of these are explained by the comment ficlds. The st_mode entry
contains a set of flags describing the fle; for convenience, the flag
definitions are also part of the file sys/stat.h.

CHAPTER 8

#define
#define
#define
#define
#define
fidefine
#define
$define
$define
$define
#define

S_IFMT 0160000
5_IFDIR 0040000
S5_IFCHR 0020000
3_IFBLK 0060000
5_IFREG 01000090

5_ISUID 04000
5_ISGID 02000
S_ISVTX 01000
S_IREAD 0400
S_IWRITE 0200
S_IEXEC 0100

rE]
/x
L
IE
/*
/=

THE UNIX SYSTEM INTERFACE 171

/* type of file =/

/* directory ==/

/+ character special =*/

/* block special #*/

/x regular «/

set user id on execution =/
set group id on execution =/
save swapped text after use *»/
read permission #/

write permission =/

execute permission */

Now we are able to write the program fSize. If the mode obtained from
stat indicates that a file is not a directory, then the size is at hand and can
be printed directly. If it is a directory, however, then we have to process
that directory one file at a time; it in turn may contain sub-directories, so
the process is recursive,

The main routine as usual deals primarily with command-line argu-
ments; it hands each argument to the function £size in a big buffer.

#include
#include
#include
#include
#define

main(ary
char #*ar
{

¢ha

if

] e

}

<stdic.h>
<sys/types.h> /% typedefs %/
<sys/dir.h> /% directory entry structure =/
<sys/stat.h>» /* structure returned by stat x/
BUFSIZE 256
¢, argv) /#* fgize: print file sizes x/
gv(];
¥ buf [BUFSIZE] ;
(arge == 1) | /* default: current directory /
strepy{buf, ".v);
fsize (buf);
1se

‘while {——argc > 0}
strepy (buf, =++argv);

faize (buf);

{

The function £size prints the size of the file. If the file is a directory,
however, fsize first calls directory to handle all the files in it. Note
the use of the flag names S_IFMT and S_IFDIR from stat.h

172 THE C PROGRAMMING LANGUAGE CHAPTER §

fsize (name} /* print size for name */
char #name;
{

struct stat stbuf;

if (stat(name, &stbuf) == -1] {
fprintf (stderr, "fsize: can‘'t find %s\n", name);
return;

]
if ((stbuf.st_mode & S_IFMT} == S_IFDIR)
directory (name);
printf {("%814d %s\n", stbuf.st_size, name);
)

The function directary is the most complicated. Much of it is con-
cerned, however, with creating the full pathname of the file being dealt
with,

directory {name) /* fsize for all files in name */
char #name;
i

gtruct direct dirbuf;

char #*nbp, *nep;

int i, f£4;

nbp = name + strlen{name);
#nbp++ = */'; /* add slash to directory name /
if {nbp+DIRSIZ+2 >= name+BUFSIZE} /# name toc long */

return;
if ({(fd = openiname, 0)) == =1)
return;
while (read(fd, (char #)&dirbuf, sizeof (dirbuf))=>0] ({
if {dirbuf.d_ino == 0} /% slot not in use */f
continue;
if (strcmp{dirbuf.d_name, ".") ==
Il stremp (dirbuf.d _name, ",.") == {0}

continue; /% skip self and parent =/
for (i=0, nep=nbp; i < DIRSIZ; i++}
#nep++ = dirbuf.d_namelil];
rnept++ = t7\0D';
fsize (name) }
}
close (fd};
*—nbp = '\0’; /% restore name */
i

If a directory slot is not currently in use (because a file has been
removed), the inode entry is zero, and this position is skipped. Each direc-
tory also contains entries for itself, called ».*, and its parent, ». ., "; clearly

CHAPTER § THE UNIX SYSTEM INTERFACE 173

these must alsc be skipped, or the program will run for quite a while.

Although the fsize program is rather specialized, it does indicate a couple
of important ideas. First, many programs are not ‘‘system programs’”; they
merely use information whose form or content is maintained by the operat-
ing system. Second, for such programs, it is crucial that the representation
of the information appear only in standard “‘header files” like stat.h and
dir.h, and that programs include those files instead of embedding the
actual declarations in themselves.

8.7 Example — A Storage Allocator

In Chapter 3, we presented a simple-minded version of alleoc. The
version which we will now write is unrestricted: calls to alloe and free
may be intermixed in any order; alloc calls upon the operating system to
obtain more memory as necessary. Besides being useful in their own right,
these routines illustrate some of the considerations involved in writing
machine-dependent code in a relatively machine-independent way, and also
show a real-life application of structures, unions and typedef.

Rather than allocating from a compiled-in fixed-sized array, allec will
request space from the operating system as needed. Since other activities in
the program may also request space asynchronously, the space alloc
manages may not be contiguous. Thus its free storage is kept as a chain of
free blocks. Each block contains a size, a pointer to the next block, and the
space itself. The blocks are kept in order of increasing storage address, and
the last block (highest address) points to the first, so the chain is actually a
ring.

When a request is made, the free list is scanned until a big enough
block is found. If the block is exactly the size requested it is unlinked from
the list and returned to the user. If the block is too big, it is split, and the
proper amount is returned to the user while the residue is put back on the
free list. If mo big enough block is found, another block is obtained from
the operating system and linked into the free list; searching then resumes.

Freeing also causes a search of the free list, to find the proper place 1o
insert the block being freed. If the block being freed is adjacent to a free
list block on either side, it is coalesced with it into a single bigger block, so
storage does not become too fragmented. Determining adjacency is easy
because the free list is maintained in storage order.

One problem, which we alluded to in Chapter 5, is to ensure that the
starage returned by alloc is aligned properly for the objects that will be
stored in it. Although machines vary, for each machine there is a most res-
trictive type: if the most restricted type can be stored at a particular address,
all other types may be also. For example, on the IBM 360/370, the
Honeywell 6000, and many other machines, any object may be stored on a
boundary appropriate for a double; on the PDP-11, int suffices.

174 THE C PROGRAMMING LANGUAGE CHAPTER &

A free block contains a pointer to the next block in the chain, a record
of the size of the block, and then the free space itself; the control informa-
tion at the beginning is called the ‘‘header.” To simplify alignment, all
blocks are multiples of the header size, and the header is aligned properly.
This is achieved by a union that contains the desired header structure and an
instance of the most restrictive alignment type:

typedef int ALIGN; /+ forces alignment on PDP-11 »/

union header | /+ free block header «/
struct {
union header *ptr; /* next free block */
unsigned size; /% size of this free block */
bos;
ALIGN x; /* force alignment of blocks =/
1:

typedef union header HEADER;

In alloc, the requested size in characters is rounded up to the proper
number of header-sized units; the actual block that will be allocated contains
one more unit, for the header itself, and this is the value recorded in the
size field of the header. The pointer returned by alloc points at the free
space, not at the header itself.

CHAPTER & THE UNIX SYSTEM INTERFACE 175

static HEADER base; /% empty list to get started =/
static HEADER #allocp = NULL; /# last allocated block »/

char »alloc(nbytes) /+ general-purpose storage allocator =/
ungigned nbytes;
{

HEADER *morecore();

register HEADER +p, *q;

register int nunits;

nunits 1+ (nbytes+sizeof (HEADER)-1) /sizeof {HEADER) ;
if ({g = allocp) == NULL} { /* no free list yet #/
base.s.ptr = allocp = g = &base;
base.s.s5ize = 0;

}
for (p=gq-»s.ptr; ; g=p, p=p->s.ptr) |
if (p-»s.size »= nunits) { /+* big enough */
if (p-»>s.size == munits) /+ exactly &/
g-»s.ptr = p=>s.ptr;
else | /* allocate tail end =/
p-»s.s8ize —-= nunits;
p += p->g.size;
p-»s.size = nunits;
|
allocp = gq;
return{{char) (p+1));
1
if (p == allecp) /% wrapped around free list &/
if ({p = morecore{nunits)) == NULL)
return{NULL); /% none left =/

)

The variable base is used to get started; if allocp is NULL, as it is at
the first call of alloc, then a degenerate free list is created: it contains one
block of size zero, and points to itself. In any case, the free list is then
searched. The search for a free block of adequate size begins at the point
(allocp) where the last block was found; this strategy helps keep the list
homogeneous. If a too-big block is found, the tail end is returned to the
user; in this way the header of the original needs only to have iis size
adjusted. In all cases, the pointer returned to the user is to the actual free
area, which is one unit beyond the header. Notice that p is converted to a
character pointer before being returned by alloc.

The function morecore obtains storage from the operating system.
The details of how this is done of course vary from system to system. In
UNIX, the system entry sbrk({n) returns a pointer t¢ n more bytes of
storage. (The pointer satisfies all alignment restrictions.) Since asking the

176 THE C PROGRAMMING LANGUAGE CHAPTER 8

system for memory is a comparatively expensive operation, we don’t want to
do that on every call to alloc, so morecore rounds up the number of
units requested of it 1o a larger value; this larger block will be chopped up as
needed. The amount of scaling is a parameter that can be tuned as needed.

#define NALLOC 128 /x #units to allocate at once =/

static HEADER +morecore{nu) /+ ask system for memory */
unsigned nu;

(
char #sbrkl(};
register char *cp;
register HEADER =up;
register int rnu;

rnu = NALLOC + (({nu+NALLOC-1) / NALLQC);

cp = sbrk(rnu * sizeof {HEADER]);

if ({int)egp == -1} /+ no space at all */
return{NULL) ;

up = (HEADER *)cp;

np->s.size = rnu;

free((char *) {up+1));

return(allocp);

|

sbrk returns -1 if there was no space, even though NULL would have
been a better choice. The -1 must be converted to an int s0 it can be
safely compared. Again, casts are heavily used so the function is relatively
immune to the details of pointer representation on different machines.

free itself is the last thing. It simply scans the free list, starting at
allocp, looking for the place to insert the free block. This is either
between two existing blocks or at one end of the list. In any case, if the
block being freed is adjacent to either neighbor, the adjacent blocks are com-
bined. The oniy troubles are keeping the pointers pointing to the right
things and the sizes correct.

CHAPTER & THE UNIX SYSTEM INTERFACE 177

free{ap} /+* put block ap in free list »/
char »ap;
{

register HERDER #*p, *q;

p = {HEADER *)ap —~ 1; /% point to header =/
for {(g=allocp; !{p > q &8& p < g->s.ptr); gq=g->s.ptr}
if (g »>= g—>s.ptr && (p > g ||l p < gq->s.ptr))
break; /* at one end or other «/

if (p+p-»>s.size == g-»s.ptr) { /* join to upper nbr =/
p->5.5ize += q-»s.ptr-»s.size;
p=>s5.ptr = g->s.ptr->s.ptr;

} else
p=>s5.ptr = g->s.ptr;
if (g+g->s.size == p) (/* join to lower nbr */

q->»>g.8ize += p-»5.s5ize;
q->s.ptr = p—->s.ptr;

} else
g->s.ptr = p;
allecp = g;

)

Although storage allocation is iatrinsically machine dependent, the code
shown above illustrates how the machine dependencies can be controlied
and confined 1o a very small part of the program. The use of typedef and
union handles alignment (given that sbrk supplies an appropriate pointer).
Casts arrange that pointer conversions are made explicit, and even cope with
a badly-designed system interface. Even though the details here are related
to storage allocation, the general approach is applicable to other situations as
well.

Exercise 8-6. The standard library function calloc (n, size) returns a
pointer to n objects of size size, with the storage initialized to zero. Write
callocg, using alloc either as a model or as a function to be called. O

Exercise 8-7. alloc accepts a size request without checking its plausibility;
free believes that the block it is asked to free contains a valid size field.
Improve these routines to take more pains with error checking. O

Exercise 8-8. Write a routine bfree(p, n) which will free an arbitrary
block p of n characters into the free list maintained by alloc and free.
By using bfree, a user can add a static or external array to the free list at
any time. O

O ll LA = L II" VII‘H" fl‘ﬁ ml _! T -'1 LR)
ﬁ“..q:-;_ 1*.!'41.“‘ ;'..'l Gy ol |-|‘J"'F.¢{'°' 4 |.~..1T j

_ ." 0 fad e I”=--|.- £ i -'.m .-*‘-..f._u N
u e || |H l,lli'l“ ~ I‘F .‘ " fs'? If‘fﬁH'I‘ i

b -'-_'W}n E.d-.‘.l:lpﬁ .||lr.!'u .-!.:.-_p! .n"‘_l;""j'wi]rlm m. ..|' _qlf o,

] QI‘- SR Bt~ l' ‘l:”.i ;..l q.. EI '-""1'"””!‘5 I.Jl_rl'q '”:| l|.Illli
":U e Il!“'-.[r" ﬂI.-LHJ -—jl Jld‘l'_".“, *: W =" J

"e’ ‘m‘!l‘t BJTH -:J.', n'. =t ,m]\ﬂ" ! Te -_' . ._; . :
g ¥ I‘l . -"j' Ir'i.l e |'|-t-"‘ -.”'li
I : ‘e Ju”
| ET '?Wl*f '-F - Lll:"“__:' m_ el !f " N ‘lt A |7|'-: Ji
. l:. '| TR 'JT LJ-H!; 1’ l-p-u. it '.d__' I ‘lll'll | Illlli
IE‘L r#l “" &1 1 T I |*. .ﬂlﬁ J .0 . .‘ r
o T, plle "] Palg
L S N ?.l i - pu,, ?hj

Iz h ”7_,.: ‘l‘_ E |rJ Fl%
-s X "ﬂ ﬁ'-n b by rdedd 4 o ol
it e

11.-51 . hLtl ¥

Illn:. I‘ ll-ai.l | ;H p)} "E

: 't] /S o) ~.-i'

.‘.nf A
'.*.."—;.‘wﬂfﬁ.@ﬁ{ e ; .

S AE ﬁfp%: A n'_ gl 'ﬂ

-‘_ ‘I ,,l; |- 5!']5 1 | |; 'Ilq_l”IIII] _,.I
" #JQ}FH‘I'LF.JT 'u."r'f'" '5r|.7“' "-.*w!*ﬁ""'"
y Rt e T st R LI,

7-1;' A ﬂ r
it aie "Rt AN R o
s P e

I et Wy T ‘.ﬂp-f‘;.‘ ':_L
; ??ﬁ-."ﬁi-imﬁﬂi?’k!.‘.- ﬂlﬂ

= LA, "! .':".ti. fogaEh |
a r R

1 ! }%‘ fI1I ’"au'l"' 1—-J-
g‘ __-*":' .f—'q” -=| ! '(l"l

“! F""!J
% el g ﬁni.’\l v ':Iﬁ .[m@e S e\ .klntzﬁ."h'f -! 2 Lidlg
3 I“ iﬂ'? i |““'I' h\ ﬂiﬁl t‘ ""_l'kl I J.l-.llll‘ a‘l‘ Fl t.
?l‘ , ‘ﬂ' ll'i".n&ﬂ"”‘” ‘f‘rllﬂ 1_‘)1"‘|| _l‘ 1I|L h'll‘.'”ﬁ;%:r'b;}“

q i ll pﬂl’h'f.'g‘“" li
H'ﬁuﬁ Gilhs 1[il ‘H'rliy“l i l"f._

: | *f?*-n sm.r.ﬂ AN br ".uf' ot
g -_m s
ﬂ&%& AN e

o 5 fﬁ #’

1
F

APPENDIX A: C REFERENCE MANUAL

1. Introduction

This manual describes the C language on the DEC PDP-11, the Honeywell 6000,
the TBM System/370, and the Interdata 8/32. Where differences exist, it concen-
trates on the PDP-11, but tries. to point out implementation-dependent details. With
few exceptions, these dependencies. follow directly from the underlying properties of
the hardware; the various compilers are generally quite compatible.

2. Lexical conventions ‘

There are six classes of tokens: identifiers, keywords, constants, strings, opera-
tors, and other separators. Blanks, tabs, newlines, and comments {collectivély,
“white space™) as described below are ignored excepi as they setve to separate
tokens. Some white space is required to separate otherwise adjacent identifiers, key-
words, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to include the longesi siring of characters which could possibly
constitute a token.

2.1 Comments
The characters /w introduce a comment, which terminates with the characters
*/. Comments do not nest.

2.2 ldentifiers (Names)

An identifier is a sequence of letters and digits; the first character must be a
letter. The underscore _ counts as a leiter. Upper and lower case letters are
different. No more than the first eight characters are significant, although more may
be used. External identifiers, which are used by various assemblers and loaders, are
maore restricted:

DEC PDP-11 7 characters, 2 cases
Honeywell 6000 6 characters, 1 case
IBM 360/370 7 characters, 1 case
Interdata 8/32 8 characters, 2 cases

179

180 THE C PROGRAMMING LANGUAGE APPENDIX A

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used
otherwise:

int extern else
char register for
float typedef da
doukle static while
struct goto switeh
union return case
long sizeof defaunlt
short break entry
ungsigned continue

auto if

The entry keyword is not currently implemented by any compiler but is reserved
for future use. Some implementations also reserve the words fortran and asm

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteristics
which affect sizes are summarized in §2.6.

2.4.1 Inieger constants

An integer constant consisting of a sequence of digits is taken to be octal if it
begins with 0 (digit zero), decimal otherwise. The digits 8 and 9 have octal value
10 and 11 respectively. A sequence of digits preceded by 0x or 0X (digit zero) is
taken to be a hexadecimal integer. The hexadecimal digits include a or A through £
or F with values 10 through 15. A decimal constant whose value exceeds the largest
signed machine integer is taken to be long; an octal or hex constant which exceeds
the largest unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constants

A decimal, octal, or hexadecimal integer constant immediately followed by 1
(letter ell) or L is a long constant. As discussed below, on some machines integer
and long values may be considered identical.

2.4.3 Character constanis

A character constant is a character enclosed in single quotes, as in 'x*. The
value of a character constant is the numerical value of the character in the
machine’s character set.

Certain non-graphic characters, the single quote * and the backslash \, may be
represented according to the following table of escape sequences:

APPENDIX A C REFERENCE MANUAL 181

newline NL {LF} “n
horizontal tab HT A\t
backspace BS \b
carriage return CR \r
form feed FF \E
backslash \ A%
single quote i 1]
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which
are taken to specify the value of the desired character. A special case of this con-
struction is \0 (not followed by a digit), which indicates the character NUL. If the
character following a backslash is not one of those specified, the backslash is
ignored.

2.4.4 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part,
an e or E, and an oplionally signed integer exponent. The integer and fraction parts
both consist of a sequence of digits. Either the integer part ot the fraction part (not
both) may be missing; either the decimal point or the e and the exponent (not
both) may be missing. Every floaling constant is taken to be double-precision.

2.5 Strings

A string is a sequence of characters surrounded by double quotes, asin "...".
A string has type “‘array of characters”™ and storage class static (see §4 below)
and is initialized with the given characters. All strings, even when written identi-
cally, are distinet. The compiler places a null byte \0 at the end of each string so
that programs which scan the string can find its end. In a string, the double quote
character " must be preceded by a \; in addiiion, the same escapes as described for
character constants may be used. Finally, a \ and an immediately following newline
are ignored.

2.6 Hardware characteristics

The following table summarizes certain hardware properties which vary from
machine to machine. Although these affect program portability, in practice they are
less of a problem than might be thought a priori.

182 THE C PROGRAMMING LANGUAGE APPENDIX A

DEC PDP-11 Honeywell 6000 IBM 370 Interdata 8/32
ASCI ASCI EBCDIC ASCII
char 8 bits 9 bits 8 bits 8 bits
int 16 36 32 3z
short 16 36 16 16
long 32 36 32 32
float 32 36 32 32
double 64 72 64 64
range +]10+# +]10+3¢ +10%™ +10+7

For these four machines, floating point numbers have 8 bit exponents.

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by
italic type, and literal words and characters in bold type. Alternative categories are
listed on separate lines. An oplional lerminal or non-terminal symbol is indicated by
the subscript “‘opt,”” so that

(expression,]

indicales an optional expression enclosed in braces. The syntax is summarized in
§18.

4. What's in a name?

C bases the interpretation of an ideniifier upon two attributes of the identifier:
its siorage class and its type. The storage class determines the location and lifeltime
of the storage associated with an identifier; the type determines the meaning of the
values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and regis-
ter. Automatic variables are local to each invocation of a block (§9.2), and are dis-
carded upon exit from the block; static variables are local to a block, but retain their
values upon reentry to a block even after control has left the block; external vari-
ables exist and retain their values throughout the execution of the entire program,
and may be used for communicalion belween functions, even separately compiled
functions. Register variables are (if possible) stored in the last registers of the
machine; like automatic variables they are local to each block and disappear on exit
from the block.

C supports several fundamental types of objects:

Objects declared as characters {char) are large enough to store any member of
the implementation’s character set, and if a genuine character from that character
set is stored in a characier variable, its value is equivalent to the integer code for
that character. Other quantities may be stored into character variables, but the
implementation is machine-dependent.

Up to three sizes of integer, declared short int, int, and long int, are.
available. Longer integers provide no less storage than shorter ones, but the imple-
mentation may make either short integers, or long integers, or both, equivalent t¢

APPENDIX A C REFERENCE MANUAL 183

plain integers. “‘Plain” integers have the natural size suggested by the host machine
architecture; the other sizes are provided to meet special needs.

Unsigned integers, declared unsigned, obey the laws of arithrmetic modulo 2#
where #is the number of bits in the representation. (On the PDP-11, unsigned long
quarntities are not supported.)

Single-precision floaling point {float) and double-precision floating point
{double} may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers,
they will be referred to as arithmetic types. Types char and int of all sizes will col-
lectively be called integral types. £loat and double will collectively be called foat-
ing types.

Besides the fundamental arithmetic types there is a conceptually infinite class of
derived types constructed from the fundamental types in the following ways:

arrays of objects of most types;

Sfunctions which return ohjects of a given type;

pointers 10 objects of a given type;

structires containing a sequence ol objects of various types.

unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues

An object is a manipulatable region of storage; an fvalue is an expression refer-
Ting to an object. An obvious example of an Ivalue expression is an identifier.
There are operators which yvield Ivalues: for example, if E is an expression of pointer
type, then +E is an lvalue expression referring to the object to which E points. The
name “‘lvalue” comes from the assignment expression E1 = E2 in which the left
operand E1 must be an jvalue expression. The discussion ¢f each operator below
indicates whether it expects lvalue operands and whether it yields an lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of
the value of an operand from one lype to another. This section explains the result
to be expected from such conversions. §6.6 summarizes the conversions demanded
by most ordinary operators; it will be supplemented as required by the discussion of
each operator.

6.1 Characters and integers

A character or a short integer may be used wherever an integer may be used.
In all cases the value is converted to an integer. Conversion of a shorter integer to
a longer always involves sign extension; integers are signed quantities. Whether or
not sign-extension occurs for characters is machine dependent, but it is guaranteed
that a member of the standard character sel is non-negative. Of the machines
treated by this manual, only the PDP-11 sign-extends. On the PDP-11, character
variables range in value from —128 to 127, the characters of the ASCII alphabet are
all positive. A character constant specified with an octal escape suffers sign exten-
sion and may appear negative;, for example, *\377* has the value -1.

When a longer integer is converted to a shorter or to a char, it is truncated on
the left; excess bits are simply discarded.

184 THE € PROGRAMMING LANGUAGE APPENDIX A

6.2 Float and double

All floating arithmetic in C is carried out in double-precision; whenever a
fleoat appeats in an expression it is lengthened to double by zero-padding its frac-
tion. When a double must be converted to float, for example by an assignment,
the double is rounded before truncation to float length.

6.3 Floating and integral

Conversions of floating values to integral type tend to be rather machine-
dependent; in particular the direction of truncation of negative numbers varies from
machine to machine. The result is undefined if the value will not fit in the space
provided,

Conversions of integral values to floaling type are well behaved. Some loss of
precision occurs if the destination lacks sufficient bits.

6.4 Pointers and integers

An integer or long integer may be added to or subtracted from a peinter; in
such a case the first is converted as specified in the discussion of the addition opera-
tor.

Two pointers Lo objecis of the same type may be subtracted; in this case the
result is converted to an integer as specified in the discussion of the subtraction
operatot.

6.5 Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain
integer is converted to unsigned and the result is unsigned. The value is the least
unsigned integer congruent to the signed integer {modulo 2*°"%%®) In a 2's comple-
ment tepresentation, this conversion is conceptual and there is no actwal change in
the bit pattern.

When an unsigned integer is converted to long, the value of the result is the
same numerically as that of the unsigned integer. Thus the conversion amounts to
padding with zeros on the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yvield result types in a similar
way. This patiern will be called the **usual arithmetic conversions.”

First, any operands of type char or short are converted to int, and any of
type £loat are converted 1o double,

Then, if either operand is double, the other is converted to double and that
is the type of the result.

Otherwise, if either operand is long, the other is converted to long and that
is the type of the result.

Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type of the result,

Otherwise, both operands must be int, and that is the type of the result.

APPENDIX A C REFERENCE MANUAL 185

7. Expressions

The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. Thus, for example, the expres-
sions referred to as the operands of + (§7.4) dre those expressions defined in §§7.1-
7.3. Within each subsection, the operators have the same precedence. Left- or
right-associativity is specified in cach subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in
the grammar of §18.

Otherwise the order of evaluation of expressions is undefined. In particular the
compiler considers itself free to compute subexpressions in the order it believes
most efficient, even if the subexpressions involve side effects. The order in which
side effects take place is unspecified. Expressions involving a commutative and
associative operator {x, +, & |, ~} may be rearranged arbitrarily, even in the pres-
ence of parentheses; lo force a particular order of evaluation an explicit temporary
must be used.

The handling of overflow and divide check in expression evaluation is
machine-dependent. All existing implementations of C ignore integer overflows:
treatment of division by 0, and all floating-point exceptions, varies between
machines, and is usually adjustable by a library function.

7.1 Primary expressions _
Primary expressions involving ., ->, subscripting, and function calls group left
to right.

Primary-expression:
identifier
constant
string
{ expression)
primary-expression [expression]
primary-expression (exﬂression-!:‘srw, }
primary-tvalue . identifier
primary-expression —> identifier

expression-list;
expression
exgression-tist , expression

An identifier is a primary expression, provided it has been suitably declared as dis-
cussed below. [ts type is specified by its declaration. If the type of the identifier is
“array of ...”", however, then the value of the identifier-expression is a pointer to
the first object in the array, and the type of the expression is “‘pointer to ...".
Moreover, an array identifier is not an lvalue expression. Likewise, an identifier
which is declared **function returning ...”", when used except in the function-name
position of a call, is converted to “*pointer to function returning ...".

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int: floating constants are
double.

186 THE C PROGRAMMING LANGUAGE APPENDIX A

A string is a primary expression. Its type is originally “array of char™; but fol-
lowing the same rule given above for ientifiers, this is modified to “pointer to
char” and the result is a pointer to the first character in the string. (There is an
exceplion in certain initializers; see §8.6.)

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses does
not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary
expression. The intuitive meaning is that of a subscript. Usually, the primary
expression has type ‘‘pointer to ...”", the subscript expression is int, and the Lype
of the result is *...”. The expression E1([E2] is identical (by definition) 1o
= [(E1)+({E2)). All the clues needed to understand this notation are contained in
this section together with the discussions in §8 7.1, 7.2, and 7.4 on identifiers, *,
and + respectively; §14.3 below summarizes the implications.

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions which constitute the actual
arguments to the function. The primary expression must be of type “‘function
returning ...”", and the result of the function call is of 1ype **...”". As indicated
below, a hitherto unseen identifier followed immediately by a left parenthesis is con-
textually declared to represent a function returning an integer; thus in the most
common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call;
any of type char or shoxt are converted to int; and as usual, array names are
converted to pointers. No other conversions are performed automatically; in partic-
ular, the compiler does not compare the types of actual arguments with those of for-
mal arguments. If conversion is needed, use a cast; see §7.2, 8.7.

In preparing for the call to a function, a copy is made of each actual parameier;
thus, all argument-passing in € is strictly by value. A function may change the
values of its formal parameters, but these changes cannot affect the values of the
actual parameters. On the other hand, it is possible to pass a pointer on the under-
standing that the function may change the value of the object to which the pointer
points. An array name is a pointer expression. The order of evaluation of argu-
ments is undefined by the language; take note that the various compilers differ.

Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expres-
sion. The first expression must be an lvalue naming a structure ot a union, and the
identifier must name a member of the structure or union. The result is an Ivaloe
referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a — and a ») followed by
an identifier is an expression. The first expression must be a pointer to a structure
or a union and the identifier must name a member of that structure or union. The
result is an Ivalue referring to the named member of the structure or union to which
the pointer expression points.

Thus the expression E1->MOS is the same as (#E1).MOS. Structures and
unions are discussed in §8.5. The rules given here for the use of structures and
unions are not enforced strictly, in order to allow an escape from the tlyping
mechanism. See §14.1.

APPENDIX A C REFERENCE MANUAL 187

7.2 Unary aperators
Expressions with unary operators group right-to-left.

wnary-expression;
* expression
& halue
— expression
! expression
~ expression
++ ivalue
— lvalue
fvalue ++
Ivalue —
{ tvpe-name) expression
sizeof expression
sizeof (fype-name)

The unary x operator means Jadirection; the expression must be a pointer, and the
result is an lvalue relerring to the object to which the expression points. If the type
of the expression is ‘‘pointer to ...", the type of the result s **... ",

The result of the unary & operator is a pointer to the object referred to by the
Ivalue. If the type of the lvalue is **..."", the type of the result is “*pointer to ...""

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity is com-
puted by subtracting its value from 2% where nis the number of bits in an int.
There is no unary + operator.

The result of the logical negation operator ! is 1 if the value of its operand is 0,
0 if the value of its operand is non-zero. The type of .the result is int. Tt is appli-
cable to any arithmetic {ype or o pomlers

The ~ operator yvields (he one’s complement of iis operand. The usual arith-
metic conversions are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The
value is the new value of the operand, but is not an lvalue. The expression ++x is
equivalent to x+=1. See the discussions of addition (§7.4) and assignment operaiors
(§7.14) for information on conversions.

The tvalue operand of prefix —- is decremented analogously to the prefix ++
operator,

When postfix ++ is applied to an lvalue the tesult is the value of the obiject
referred to by the Ivalue. After the result is noted, the object is incremented in the
same manner as for the prefix ++ operator. The type of the result is the same as
the type of the lvalue expression.

When postfix —— is applied to an lvalue the.result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented in the
manner as for the prefix — operator. The type of the result is the same as the type
of the Ivalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This construction is
called a cast. Type names are described in §8.7.

188 THE C PROGRAMMING LANGUAGE APPENDIX A

The sizeof operator vields the size, in bytes, of its operand. (A byte is
undefined by the language except in terms of the value of sizeof. However, in all
existing implementations a byte is the space required to hold a chax.) When applied
to an array, the result is the total number of bytes in the array. The size is deter-
mined from the declarations of the objects in the expression. This expression is
semantically an integer constant and may be used anywhere a constant is required.
Its major use is in communication with routines like storage allocators and 1/0 sys-
tems.

The sizeof operator may also be applied to a parenthesized type name. In
that case it yields the size, in bytes, of an object of the indicated type.

The construction sizeof (fpe) is taken 1o be a unit, so the expression
sizeof (fype) =2 is the same as {sizeof (fype)) -2

7.3 Multiplicative operators
The multiplicative operators », /, and % group lefi-to-right. The usual arith-
metic conversions are performed.

multiplicative-expression!
expression * expression
expression / expression
EXPressinn % expression

The binary * operator indicates multiplication. The « operator is associative
and expressions with several multiplications at the same level may be rearranged by
the compiler.

The binary / operator indicates division. When positive integers are divided
truncation is toward 0, but the form of truncation is machine-dependent if either
operand is negative. On all machines covered by this manual, the remainder has the
same sign as the dividend, It is always true that (a/b)*b + a%bisequalto a (if b
is not 0),

The binary % operator yields the remainder from the division of the first expres-
sion by the second. The usual arithmetic conversions are performed. The operands
must not be float.

7.4 Additive operators

The additive operators + and - group left-to-right. The usual arithmetic
conversions are performed. There are some additional type possibilities for each
operator.

additive-expression:
eXPression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer 1o an object in
an array and a value of any integral type may be added. The latter is in all cases
converted to an address offset by multiplying it by the length of the object to which
the pointer points. The result is a pointer of the same type as the original pointer,
and which points te another object in the same array, appropriately offset from the
original object. Thus if P is a pointer to an object in an array, the expression P+ is
a pointer te the next object in the array,

APPENDIX A C REFERENCE MANUAL 189

No further type combinations are allowed for poinlers.

The + operator is associative and expressions with several additions at the same
level may be rearranged by the compiler.

The result of the — operator is the difference of the operands. The usual arith-
melic conversions are performed. Additionally, a value of any integral type may be
subtracted from a peoinier, and then the same conversions as for addition apply.

If two pointers to objects of the same type are subtracied, the result is con-
verted (by division by the length of the object) to an int representing the number
of objects separating the pointed-to objects. This conversion will in general give
unexpected results unless the poinlers point to objects in the same array, since
pointers, even to objects of the same type, do not necessarily differ by a multiple of
the object-length.

7.5 Shift operators

The shift operators << and >> group left-to-right. Both perform the usual arith-
metic conversions on their operands, each of which must be integral. Then the
right operand is converted to int; the type of the result is that of the left operand.
The result is undefined if the right operand is negative, or grealer than or equal to
the length of the object in bits.

shift-expression:
expression << expression
eXPression »> expression

The value of E1<<E2 is E1 (inlerpreted as a bit pattern) left-shifted 22 bits; vacated
bits are O-filled. The value of E1:»>E2 is E1 right-shifted E2 bit positions. The right
shift is guaranteed to be logical (0-fill) if E1 is unsigned; otherwise it may be (and
is, on the PDP-11) arithmetic (fill by a copy of the sign bit).

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful;
a<b<c does not mean what it seems to.

relational-expression:
EXPrESSIONn < expression
EXPression > expression
expression <= expression
EXPression >= expression

The operators < (less than}, > (greater than), <= (less than or equal to) and »=
(greater than or egual t¢) all yield O if the specified relation is false and 1 if it is
true. The type of the result is int. The usual arithmetic conversions are per-
formed. Two pointers may be compared; the result depends on the relative loca-
tions in the address space of the pointed-to objects. Pointer comparison is portable
only when the pointers point to objects in the same array.

190 THE C PROGRAMMING LANGUAGE APPENDIX A

7.7 Equality operators

equality-expression:
expression == expression
expression 1= expression

The == (equal to) and the '= (not equal to} operators are exactly analopous to the
relational operators except for their lower precedence. (Thus a<b == c<d is |
whenever a<b and ¢<d have the same truth-value).

A pointer may be compared to an integer, but the result is machine dependent
unless the inleger is the constant 0. A pointer to which 0 has been assigned is
guaranteed not to point to any object, and will appear 10 be equal to 0; in conven-
tional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-exgression:
EeXPression & expression

The & operator is associative and expressions involving & may be rearranged. The
usual arithmetic conversions are performed:; the result is the bitwise AND function
of the eperands. The operator applies only to integral operands.

7.9 Bitwise exclusive OR operator

exclusive-or-expression.
expression ~ expression

The ~ operator is associative and expressions involving ~ may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise exclusive OR
function of the operands. The operator applies only to integral operands.

7.10 Bitwise inclusive OR operator

inclusive-or-expression:
expression | expression

The | operator is associative and expressions involving | may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise inclusive OR
function of its operands. The operator applies only to integral operands.

7.11 Logical AND operator

{ogical-and-expression:
expression A& expression

The s& operator groups left-to-right. It returns 1 if both its operands are non-zero,
0 otherwise. Unlike &, && guarantees left-to-right evaluation; moreover the second
operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fun-
damental types or be a pointer. The result is always int.

APPENDIX A C REFERENCE MANUAL 191

7.12 Logical OR operator

logical-or-expression:
expression | | expression

The || operator groups left-to-right. It returns 1 if either of its operands is non-
zero, and 0 otherwise, Unlike |, |1 guarantees left-to-right evaluation; moreover,
the second operand is not evaluated if the value of the first operand is non-zero.

The operands need nol have the same type, but each must have one of the fun-
damental types or be a pointer. The result is always int.

7.13 Conditional operator

conditional-expression;
expression T expression . expression

Conditional expressions group right-to-left. The first expression is evaluated and if
it is non-zero, the result is the value of the second expression, otherwise that of
third expression. If possible, the usual arithmetic conversions are performed to
bring the second and third expressions to a common type; otherwise, if both are
pointers of the same type,‘the result has the common type; otherwise, one must be
a pointer and the other the constant 0, and the result has the type of the pointer.
Only one of the second and third expressions is evaluated.

7.14 Assignment operators

There are a number of assignment operators, all of which group right-to-left.
All require an Ivalue as their left operand, and the type of an assignment expression
is that of its left operand. The value is the value stored in the lefl operand after the
assighment has taken place. The two parts of a compound assignment operator are
separate tokens.

assignment-expression!

lvalue = expression
lvalue += expression
lvaltie —= expression
lvailtie x= expression
halie /= expression
halue %= expression
fvalue >>= expression
Ivalue <<= expression
Ivalue &= expression
halue ~= expression
fvaliue | = expression

[n the simple assignment with =, the value of the expression replaces that of
the object referred to by the Ivalue. If both operands have arithmetic type, the right
operand is converted to the type of the left preparatory to the assignment.

The behavior of an expression of the form E1 op= E2 may be inferred by tak-
ing it as equivalent to E1 = E1 gp (E2); however, E1 is evaluated only once. In
+= and —=, the left operand may be a pointer, in which case the {integral) right
operand is converted as explained in §7.4; all right operands and all non-pointer left

192 THE C PROGRAMMING LAMGUAGE APPENDIX A

operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer, an integer
to a pointer, and a pointer to a pointer of another type. The assignment is a pure
copy operation, with no conversion. This usage is nonportable, and may produce
pointers which cause addressing exceptions when used. However, it is guaranteed
that assignment of the constant 0 to a pointer will produce a null pointer distinguish-
able from a pointer to any object.

7.15 Comma operator

COMMa-expression.
EXPression , expression

A pair of expressions separated by a comma is evalvated left-to-right and the value
of the left expression is discarded. The type and value of the result are the type and
vatue of the right operand. This operator groups left-to-right. In contexts where
comma is given a special meaning, for example in a list of actual arguments to func-
tions (§7.1) and lists of initializers (§8.6}, the comma operator as described in this
section can only appear in parentheses, for example,

fla, {t=3, t+2), c}

has three arguments, the second of which has the value 3.

8. Declarations

Declarations ate used to specify the interpretation which C gives to each
identifier; they do not necessarily reserve storage associated with the identifier.
Declarations have the form

declaration:
dect-specifiers declarator-list,, ;

The declarators in the declarator-list contain the identifiers being declared. The
decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
wpe-specifier deci-specifiers, A
sc-specifier decf—spec(ﬁersw

The list must be self-consistent in a way described below.

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a ‘‘storage class
specifier” only for syntactic convenience; it is discussed in $8.8. The meanings of

APPENDIX A C REFERENCE MANUAL 193

the varions storage classes were discussed in §4.

The auto, static, and register declarations also serve as definitions in that
they cause an appropriate amount of storage to be reserved. In the extern case
there must be an external definition (§10) for the given identifiers somewhere out-
side the function in which they are declared.

A register declaration is best thought of as an auwto declaration, together
with a hint to the compiler that the variables declared will be heavily used. Only the
first few such declarations are effective, Moreover, only variables of certain types
will be stored in registers; on the PDP-11, they are int, char, or pointer. One
other restriction applies to register variables: the address-of operator & cannot be
applied to them. Smaller, faster programs can be expected if register declarations
are used appropriately, but future improvements in code generation may render
them unnecessary,

At most one sc-specifier may be given in a declaration. If the sc-specifier is
missing from a declaration, it is taken to be auto inside a function, extern out-
side. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier.
char
short
int
long
unsigned
float
double
strict-or-union-specifier
ypedef-name

The words long, short, and unsigned may be thought of as adjectives; the fol-
lowing combinations are acceptable.

short int
long int
unsigned int
long float

The meaning of the last is the same as double. OQtherwise, at most one type-
specifier may be given in a declaration. If the type-specifier is missing from a
declaration, it is taken to be int.

Specifiers for structures and unions are discussed in §8.5; declarations with
typedef names are discussed in §8.8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of
declarators, each of which may have an initializer.

194 THE C PROGRAMMING LANGUAGE APPENDIX A

declarator-list;
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type
and storage class of the objects to which the declarators refer. Declarators have the
syntax:

declarator,
identifier
{ declarator)
* declarator
declarator ()

declarator [constant-expression_]

opr

The grouping is the same as in expressions.

8.4 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same
form as the declarator appears in an expression, il yields an object of the indicated
type and storage class. Each declarator contains exactly one identifier; it is this
identifier that is declared,

If an unadorned identifier appears as a declarator, then it has the type indicated
by the specifier heading the declaration.

A declarutor in parentheses is identical to the wnadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the examples
below,

Now imagine a declaration

T D1
where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this
declaration makes the identifier have type ** ... T, where the ““...”" is empty if D1

is just a plain identifier (so that the type of x in “int x” is just int). Then if D1
has the form

*D

the type of the contained identifier is **_.. pointer to T.”’
If D1 has the form

D}

then the contained identifier has the type *“... function returning T.”
If D1 has the form

D [constant-expression]

or

APPENDIX A C REFERENCE MANUAL 195

D[l

then the contained identifier has type ** ... array of T."" In the first case the constant
expression is an expression whose value is determinable at compile time, and whose
type is int. {Constant expressions are defined precisely in §15.) When several
“array of” specifications are adjacent, a multi-dimensional array is created; the con-
stanl expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external
and the actual definition, which allocates storage, is given elsewhere. The first
constant-expression may also be omitted when the declarator is followed by initiali-
zation. In this case the size is calculated from the number of initial elements sup-
plied.

An array may be constructed from one of the basic types, from a pointer, from
a structure or union, or from another artay {to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The
restrictions are as follows: functions may not return arrays, structures, unions or
functions, although they may return pointers to such things; there are no arrays of
functions, although there may be arrays of pointers to functions. Likewise a siruc-
ture or union may not contain a function, but it may contain a pomter to a function.

As an example, the declaration

int i, #ip, £0), *fip(), (*pfi) ()}

declares an integer i, a pointer ip to an integer, a function £ returning an integer, a
function f£ip relurning a pointer to an integer, and a pointer pfi to a function
which returns an integer. It is especially useful to compare the last two. The bind-
ing of #fip{) is « (£ip()), so that the declaration suggests, and the same con-
struction in an expression requires, the calling of a function f£ip, and then using
indirection through the (pointer) result to yield an integer. In the deciarator
{+pfi) {), the extra parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields a functicn, which is
then called; it returns an integer,
As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.
Finally,

static int x3d4[3][5]117];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete
detail, x34d is an array of three items; each item is an array of five arrays; each of
the latter arrays is an array of seven integers. Any of the expressions x3d, x3d[i],
x3d[i]1[j], x3d(i) [j) [X] may reasonably appear in an expression. The first
three have type ‘“‘array,”’ the last has type int.

196 THE € PROGRAMMING LANGUAGE APPENDIX A

8.5 Structure and union declarations

A siructure is an object consisting of a sequence of named members. Each
member may have any type. A union is an object which may, at a given time, con-
l1ain any one of several members. Structure and union specifiers have the same
form.

struct-or-union-specifier:
strucr-or-trion | struci-deci-list
strsict-or-urnion ideniifier (struct-deci-fist)
striict-or-union identifier

yirict-or-union.
struct
uniecn

The struct-decl-list is a sequence of declarations for the members of the siructure or
union:

struct-deci-tist;
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
wype-specifier struct-declararor-fist ;

struct-deciarator-fise:
struct-declarator
struct-declarator , struct-declarator-iist

In the usual case, a struct-declarator is just a declarator for a member of a structure
or union. A structure member may also consist of a specified number of bits. Such
a member is also called a field, its length is set off from the field name by a colon.

struct-declaraior!
declarator
deciarator : constant-expression
L roastani-expression

Within a structure, the objects declared have addresses which increase as their
declarations are read left-to-right. Each non-field member of a structure begins on
an addressing boundary appropriale to its type; therefore, there may be unnamed
holes in a structure. Field members are packed inlo machine integers; they do not
straddle words. A field which does not fit into the space remaining in a word is put
into the next word. No field may be wider than a word. Fields are assigned right-
to-left on the PDP-11, left-to-right on other machines.

A struci-declarator with no declarator, enly a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts. As a
special case, an unnamed field with a width of 0 specifies alighment of the next field
at a word boundary. The *‘next field"’ presumably is a field, not an ordinary strug-
ture member, because in the latter case the alignment would have been automatic.

APPENDIX A C REFERENCE MANUAL 197

The language does not restrict the types of things that are declared as fields, but
implementations are not required to support any but integer Felds. Moreover, even
int fields may be considered 1o be unsigned. On the PDP-11, fields are not signed
and have only integer values. In all implementations, there are no arrays of fields,
and the address-of operator & may not be applied to them, so that there are no
pointers to fields.

A union may be thought of as a structure all of whose members begin at offset
0 and whose size is sufficient to contain any of its members. At most one of the
members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

styuct identifier { siruct-dect-fist)
union idenrifier | struct-deci-tist)

declares the identifier to be the structire tag (or union tag) of the structure specified
by the list. A subsequent declaration may then use the third form of specifier, one
of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the long
part of the declaration to be given once and used several times. It is illegal to
declare a structure or union which contains an instance of itself, but a structure or
union may contain a pointer to an instance of itself,

The names of members and tags may be the same as ordinary variables. How-
ever, names of tags and members must be mutually distinct,

Two structures may share a common initial sequence of members; that is, the
same member may appear in 1wo different structures if it has the same iype in both
and if all previous members are the same in both. (Actually, the compiler checks
only thal a name in two different structures has the same type and offset in both,
but if preceding members differ the construciion is nonportable.)

A simple example of a structure declaration is

struct tnode |
char tword[20];
int count;
struct tnode +left;
struct tnode =sright;
}i
which contains an array of 20 characters, an integer, and two pointers to similar
struciures. Ongce this declaration has been given, the declaration

struct tnode s, w»sp;

declares s to be a structure of the given sort and sp 10 be a pointer to a structure of
the given sori. With these declarations, the expression

sp—>count

refers 10 the count field of the structure Lo which sp points;

&

198 THE C PROGRAMMING LANGUAGE APPENDIX A

s.left
refers to the left subtree pointer of the structufe g, and
s.right->tword[0]

refers to the first character of the tword member of the right subtree of 2.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The
initializer is preceded by =, and consists of an expression or a list of values nested-in
braces.
initiglizer:

= eXPression

= { initighizer-list)

= { witializer-list , }

inftiglizer-list:
expression
initializer-list , initializer-tist
(initializer-list }

All the expressions in an initializer for a static or external variable must be con-
stant expressions, which are described in §15, or expressions which reduce to the
address of a previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialized by arbitrary expressions involving
constants, and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off
as 0; automatic and register variables which are not initialized are guaranteed to start
off as garbage.

When an initializer applies to a scafar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value of the
object is taken from the expression; the same conversions as for assignment are per-
formed.

When the declared variable is an aggregate (a structure or array} then the ini-
tializer consists of a brace-enclosed, comma-separated list of initializers for the
members of the aggregate, writteh in increasing subscript or member order. 1f the
aggregate contains subaggregates, this rule applies recursively to the members of the
aggregate. If there are fewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with 0°s, It is not permitted to initialize
unions or automatic aggregates.

Braces may be elided as fellows. 1If the inltializer begins with a left brace, then
the succeeding comma-separated list of initializers initializes the members of the
aggregate; it is erconeous for there to be more initializers than members. If, how-
ever, the initializer does not begin with a left brace, then only enough elements
from the list are taken to account for the members of the aggregate; any remaining
members are left to initialize the next member of the aggregate of which the current
aggregale is a part.

APPENDIX A C REFERENCE MANUAL 199

A final abbreviation allows a char array {0 be initialized by a string. 1n this
case successive characters of the string initialize the members of the array.
For example,

int x[1 = (1, 3, 5);

declares and initializes x as a 1-dimensional array which has three members, since
no size was specified and there are three initializers,

float y[4] (3] = |

{1, 3,51},
{2, 4,86),
T Lok I

i

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array
y[0], namely y[0] [0], y[0] [1], and y[0] [2]. Likewise the next two lines ini-
tialize y[1] and y[2]. The initializer ends early and therefore v [3] is initialized
with 0. Precisely the same effect could have been achicved by

float y[4][3] = ¢
U oS 2, 6 3 5 2
I

The initializer for ¥ begins with a teft brace, but that for y[0] does not, therefore 3
clements from the list are used. Likewise the next three are taken successively for
¥[1] and ¥[2]. Also,

float y[4][3] = {
s S50 20 5030 by, fueds)
):

initializes the first column of y (regarded as a two-dimensional array) and leaves the
rest 0,
Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are inilialized with a string.

8.7 Type names

In two contexts {to specify type conversions explicilly by means of a cast, and
as an argument of sizeof) it is desired to supply the name of a data type. This is
accomplished using a *‘type name,”” which in essence is a declaration for an object
of that lype which omits the name of the object.

vpe-name:
wpe-specifier alistraci-declararor

200 THE C PROGRAMMING LANGUAGE APPENDIX A

abstract-declarator:
emply
{ absiract-declarator)
* gbstract-declarator
abstract-deciarator {)

abstract-declarator [constant-expression, 2]

To avoid ambiguily, in the construction
{ abstract-declarator)

the abstract-declarator is required to be non-empty. Under this restriction, it is pos-
sible to identify uniguely the location in the abstract-declarator where the identifier
would appear if the construction were a declarator in a declaration. The named type
is then the same as the type of the hypothetical identifier. For example,

int

int =*

int *[3]

int {(#) {3]

int «()

int (#) O

LYY

name respectively the lypes “‘integer,”” “‘pointer to integer,” “‘array of 3 pointers to
integers,” “‘pointer to an array of 3 integers,” “‘function returning pointer to
integer,” and “*pointer to function returning an integer.”

8.8 Typedef)

Declarations whose “‘storage class” is typedef do not d\aﬁne storage, but
instead define identifiers which can be used later as if they were type keywords nam-
ing fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as
part of any declarator therein become syntactically equivalent 1o the type keyword
naming the type associated with the identifier in the way described in §8.4. For
example, after

typedef int MILES, *KLICKSP;
typedef struct (double re, im;} complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the lype of distance is int, that of metriep is “‘pointer
to int,” and that of z is the specified structure. zp is a pointer to such a siructure.

typedef does not introduce brand new types, only synonyms for types which
could be specified in another way. Thus in Lthe example above distance is

APPENDIX A C REFERENCE MANUAL 201

considercd to have exactly the same type as any other int chject.

9. Siatemenis
Except as indicated, statements are execuled in sequence.

9.1 Expression statement
Most stalements are ¢xpression siatements, which have the Torm

eXPIression ;

Usually expression statements are assignments or funclion calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound
statement (also, and cquivalently, called “block™) is provided.

compound-statemeni;
! declaranon—hs!m sra!emwn—hsrw J

declaranon-tist:
declaration
declaration declaration-fist

SleHement-kst:
statement
stafement sfatement-ist

If any of the identifiers in the declaration-list were previously declared, the outer
declaration is pushed down for the duration of the block. aftcr which it resumes its
force,

Any initializations of auto or register variubles are performed each time the
block is entered at the top. It is currently possible (but a bad oractice} 1o transfer
into a block; in thatl case the initializations are not performed. Initiatizations of
static variables arc performed only once when the program begins cxecution.
Inside a block, extern declarations do not reserve storage so initialization is not
permitied.

9.3 Conditional statement
The two forms of the conditional statement are

if { expression) siatement
if (expression) statement else sigtement

In both cases the expression is evaluated and if it is non-zero, the first substatement
is exccuted. In the second case (he second substatement is executed if the expres-
sion is 0. As usual (he “‘else™ ambiguily is resolved by CONMecting an else with
the last encounicred else-less if.

202 TIE C PROGRAMMING LANGUAGE APPENDIX A

9.4 While statement
The while statement has the form

while (expression) Statement

The substatement is executed repeatedly so long as the value of the expression
remains non-zere. The test takes place before each execution of the statement.

9.5 Do statement
The do statement has the form

do staternent while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes
zero. The test takes place after each execution of the statement.

9.6 For statement
The for staiemenl has the form

for (expression-i, ; expression-2, L expression—.?w } statement
This statement is equivalent to

expression-1 ;

while (expression-2) |
statement
expression-3 ;

}

Thus the first expression specifies initialization for the loop; the second specifies a
test, made before each iteration, such that the loop is exited when the expres/s’ion
becomes 0; the third expression often specifies an incrementation which is per-
formed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes
the implied while clause equivalent to while (1); other missing expressions are
simply dropped from the expansion above.

9.7 Switch statement
The switch staternent causes control to be transferred to one of several state-
ments depending on the value of an expression. 1t has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must
be int. The statement is typically compound, Any statement within the statement
may be labeled with one or more case prefixes as foliows:

case constan-expression |

where the constant expression must be int. No two of the case constants in the
same switch may bave the same value. Constant expressions are precisely defined
in §15.

There may also be at most one statement prefix of the form

APPENDIX A C REFERENCE MANUAL 203

default :

When the switch stalement is executed, its expression is evaluated and compared
with each case constant. 1If one of the case constants is equal to the value of the
expression, control is passed to the statement following the matched case prefix. If
no case constant matches the expression, and if there is a default prefix, control
passes i¢ the prefixed statemeni. If no case matches and if there is no default
then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control,
which continues unimpeded across such prefixes. To exit from a switch, see break,
§9.8.

Usually the statement that is the subject of a switch is compound. Declarations
may appear at the head of this staternent, but initializations of automatic or register
variables are ineffective.

9 8 Break statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch siatement;
control passes to the statement following the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control o pass to the loop-continuation portion of the smallest enclosing
while, do, or for statement; that is to the end of the loop. More precisely, in
each of the statements

while (...} | do | for (...} [
contin! ; contin: contin: ;
} } while (...);)

-a

a continue is equivalent to goto contin. (Following the contin: is a null
statement, §9.13.) ’

9.10 Return statement
A function returns to its caller by means of the return statement, which has
one of the forms

return ;
return exgression ;

In the first case the returned value is undefined. In the second case, the value of
the expression is returned lo the caller of the function, If required, the expression
is converted, as il by assignment, to the type of the function in which it appears.
Flowing off the end of a lunction is equivalent to a return with no returned value.

204 THE C PROGRAMMING LANGUAGE AFPENDIX A

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (§9.12) located in the current function.

9.12 Labeled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a target
of a goto. The scope of 4 lubel is the current function, excluding any sub-blocks in
which the same identifier has been redeclared. See §11.

9.13 Null statement
The null statement has the form

H
A null statement is useful to carry a label just befere the) of a compound state-
ment or to supply a null body to a looping statement such as while.

10. External definitions

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or perbaps
static, and a specified type. The type-specifier (§8.2) may also be empty, in
which case the type is taken to be int. The scope of external definitions persists to
the end of the file in which they are declared just as the effect of declarations per-
sists to the end of a block. The syntax of external definitions is ihe same as that of
all declarations, except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

Junction-definition:
dect-specifiers_ function-declarator function-body

ap1f
The only sc-specifiers allowed among the decl-specifiers are extern or static; see
§11.2 for the distinction between them. A function declarator is similar to a declara-
tor for a “function returning _.."° except that it lists the formal parameters of the
function being defined.

JSunction-declarator:
declarator { parameter-list,,)

parameter-list:
identifter
identifier , parameter-list

The function-body has the form

|

P
;

;

APPENDIX A C REFERENCE MANUAL 205

function-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in
the declaration list. Any identifiers whose type is not given are taken to be int.
The only storage class which may be specified is register; if it is specified, the
corresponding actual parameter will be copied, if possible, into a register at the
outset of the function.

A simple example of a complete function definition is

int max{a, b, c}
int a, b, ¢;
i

int m;

m={a>b) ? a: b}
returni({m > ¢) ? m : ¢);

}

Here int is the type-specifier; max{a, b, c) is the function-declarator:
int a, b, c; is the declaration-list for the formal parameters; { ... |} is the
block giving the code for the statement.

C converls all fleat actual parameters to double, so formal parameters
declared float have their declaration adjusted to read double. Also, since a refer-
ence to an array in any contexl {in particular as an actual paramelcr) is taken to
mean a pointer to the first element of the array, declarations of fermal parameters
declared “‘array of ...”" are adjusted to read “‘pointer to ...”", Finally, because struc-
tures, unions and functions cannot be passed to a function, it is useless to declare a
formal parameter to be a structure, union or function (pointers to such objects are
of course permitted).

10.2 External data definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static,
but not auto or register.

11. Scope rules

A C program need not all be compiled at the same time: the source text of the
program may be kept in severat files, and precompiled routines may be ioaded from
libraries. Cormmunication among the funclions of a program may be carried out
both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called
the lexical scope of an identifier, which is essentially the region of a program during
which it may be used without drawing ‘‘undefined identifier”” diagnostics; and
second, the scope associated with cxternal identifiers, which is characterized by the
rule that references to the same external identifier are references to the same object.

206 THE C PROGRAMMING LANGUAGE APPENDIX A

11.1 Lexical scope

The lexical scope of identifiers declared in external definitions persists from the
definition through the end of the source file in which they appear. The lexical scope
of identifiers which are formal parameters persists through the function with which
they are associated. The lexical scope of identifiers declared at the head of blocks
persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

Because all references to the same external identifier refer to the same object
(see §11.2) the compiler checks all declarations of the same external identifier for
compatibility; in effect their scope is incteased 1o the whole file in which they
appear.

[n all cases, however, if an identifier is explicitly declared at the head of a block,
including the block constituting a function, any declaration of thatl identifier outside
the block is suspended until the end of the block.

Remember also (§8.5) that identifiers associated with ordinary variables on the
one hand and those associated with structure and union members and tags on the
other form two disjoint classes which do not conflict. Members and tags follow the
same scope rules as other identifiers. typedef names are in the same class as ordi-
nary identifiers. They may be redeclared in inner blocks, but an explicit type must
be given in the inner declaration:

typedef float distance;
{
auto int distance;

The int must be present in the second declaration, or it would be taken to“be a
declaration with no declarators and type distancet.

11.2 Scope of externals

If a function refers to an identifier declared to be extern, then somewhere
among the files or libraries constituting the complete program there must be an
external definition for the identifier. Aill functions in a given program which refer to
the same external identifier refer 1o the same object, so care must be taken that the
type and size specified in the definition are compatible with those specified by each
function which references the data.

The appearance of the extern keyword in an external definition indicates that
storage for the identifiers being declared will be allocated in another file. Thus in a
multi-file program, an external data definition without the extern specifier mujt
appear in exactly one of the files. Any other files which wish to give an external
definition for the identifier must include the exterm in the definition. The\

identifier can be initialized only in the declaration where storage is allocated. \

Identifiers declared static at the top level in external definitions are not visi-
ble in other files. Functions may be declared static.

Tt is agreed 1hat the ice is thin here.

\

APPENDIX A C REFERENCE MANUAL 207

12. Compiler control lines

The C compiler contains a preprocessor capable of macro substitution, condi-
tional compilation, and inclusion of named files. Lines beginning with # communi-
cate with this preprocessor. These lines have syntax independent of the rest of the
language; they may appear anywhere and have effect which lasts (independent of
scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

#define identifier token-siring

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances
of the identifier with the given string of tokens. A line of the form

#define identjfier(identifier , ... , identifier } token-string

where there is no space between the first identifier and the {, is a macro definition
with arguments. Subsequent instances of the first identifier followed by a (, a
sequence of tokens delimited by commas, and a) are replaced by the token string
in the definition. Each occurrence of an identifier mentioned in the formal parame-
ter list of the definition is replaced by the corresponding token string from the call.
The actual arguments in the call are token sirings separated by commas, however
commas in quoted strings or protected by parentheses do not separate arguments.
The number of formal and actual parameters must be the same. Text inside a string
ot a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers.
In both forms a long definition may be continued on another line by writing \ at the
end of the line to be continued.

This facility is most valuable for definition of “‘manifest constants,” as in

#define TABSIZE 100

int table{TABSIZE];
A control line of the form
#undef identifier
causes the identifier’s preprocessor definition to be forgotien.
12.2 File inclusion
A compiler control line of the form
#include “filename"

causes the replacement of that line by the entire contents of the file fitename. The
named file is searched for first in the directory of the original source file, and then
in a sequence of standard places. Alternatively, a control line of the form

#include <fiiename>

searches only the standard places, and not the directory of the source file.

208 TIE C PROGRAMMING LANGUAGE APPENDIX A

#include’s may be nested.

12.3 Conditional compilation
A compiler control line of the form

#if constani-expression

checks whether the constani expression (see §15) evaluates to non-zero. A control
line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is,
whether it has been the subject of a #define control line. A control line of the
form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly contain-
ing a control line

telse \
and then by a control line
#endif

If the checked condition is true then any lines between #elge and #endif are
ignored. If the checked condition is false then any lines between the test and an
#else or, lacking an #else, the #endif, are ignored.

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs, a line of the
form

#line constant identifier

causes the compiler to believe, for purposes of error diagnoslics, that the line
number of the next source line is given by the constant and the current input file is
named by the identifier. If the identifier is absent the remembered file name does
not change.

13. Implicit declarations

It is not always necessary Lo specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in external
definitions and in declarations of formal parameters and structure members. In a
declaration inside a function, if a storage class but no type is given, the identifier is
assumed to be int; if a type but no storage class is indicated, the identifier is
assumed to be autoc. An exception to the latter rule is made for functions, since
auto functions are meaningless (C being incapable of compiling code into the
stack): if the type of an identifier is “‘function returning ..."", it is implicitly declared
1o be extern

APPENDIX A C REFERENCE MANUAL 209

In an expression, an identifier followed by (and not already declared is contex-
lually declared to be “function returning int'.

14, Types revisited
This section summarizes the operations which can be performed on objects of
cerlain types.

14.1 Structures and unions

There are only twe things that can be done with a structure or union; name one
of its members (by means of the . operator); or take its address (by unary &).
Other operations, such as assigning from or (o it or passing il as a parameter, draw
an ecror message. In the future, it is expected (bat these operations, but not neces-
sarily others, will be allowed.

§7.1 says that in a direct or indirect structure reference (with . or —%) the
name on the right must be a member of the situcture named or pointed 10 by the
expression on the lefl. To allow an escape from the typing rules, this restriction is
not firmly enforced by the compiler. In fact, any Ivalue is allowed before ., and
that lvalue is then assumed to have the form of the structure of which the name on
the right is 2 member. Also, the expression before a —» is required only to be a
pointer or an integer. If a pointer, it is assumed to point to a structure of which the
name on Lhe right is a member. If an integer. it is taken to be the absolute address,
in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions

There are only two things that can be done with a function; call it, or take its
address. If the name of a function appears in an expression not in the function-
name posttion of a call, a pcinter to the function is generated. Thus, to pass one
function to another, one might say

int £{};

g(f);

Then the definition of g might read
g {funcp}
int (#funep) (};
{

{xfuncp) () ;

}

Notice that £ must be declared explicitly in the calling routine since its appearance
in g{£} was not followed by (.

210 THE C PROGRAMMING LANGUAGE APPENDIX A

14.3 Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is converted
into a pointer to the first member of the array. Because of this conversion, arrays
are not lvalues. By definition, the subscript operator [] is interpreted in such a way
that E1 [E2] is identical to ={ (E1}+(E2)). Because of the conversion rules which
apply to +, if E1 is an array and E2 an integer, then E1[E2] refers to the E2-th
member of E1. Therefore, despite its asymmetric appearance, subscripling is a com-
mutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an
n-dimensional array of rank ixjx - - - %k, then E appearing in an expression is con-
verted to a pointer to an {n—1)-dimensional array with rank jx - - - xk If the %
operator, either explicitly or implicitly as a result of subscripting, is applied 1o this
pointer, the rtesult is the pointed-to (#—1)-dimensional array, which iiself is
immediately converted into a pointer.

For example, consider

int x[3]1[5];

Here x is a 3 x5 array of integers. When x appears in an expression, it is converted
o a peinter to {the first of three) 5-membered arrays of integers. In the expression
x[i], which is equivalent to » (x+1i}, x is first converted 1o a pointer as described;
then i is convertad to the type of x, which involves multiplying i by the length the
object to which the pointer points, namely 3 integer objects. The results are added
and indirection applied to yield an array (of 5 integers) which in turn is converted to
a pointer to the first of the integers. 1f there is another subscript the same argument
applics again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscripl varies
fastest) and that the first subscript in the declaration helps determine the amount of
storage consumed by an array but plays no other part in subscript calculations.

14.4 Explicit pointer conversions

Certain conversions involving pointers are permitted but have implementation-
dependent aspects. They are all specified by means of an explicit type-conversion
operator, §§7.2 and 8.7.

A pointer may be converted to any of the integral types large enough to hold it.
Whether an int or long is required is machine dependent. The mapping function
15 also machine dependent, but is intended to be unsurprising to those who know
the addressing structure of the machine. Details for some particular machines are
given below.

An object of integral type may be explicitly converted to a pointer. The map-
ping always carries an inleger converted from a pointer back to the same pointer,
but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions wpon use if the subject pointer
does not refer to an object suitably aligned in siorage. It is guaranieed thal a pointer
to an object of a given size may be converted 1o a pointer to an object of a smaller
size and back again without change.

For example, a storage-allocation reutine might accept a size {in bytes) of an
ohject to allocate, and return a char pointer; it might be used in this way.

AFPENDIX A C REFERENCE MANUAL 211

extern char #alloc();
double *dp;

dp = (double #) alloc(sizeof{double});
*dp = 22.0 / 7.0;

alloc must ensure (in a machine-dependent way) that its return value is suilable
for conversion to a pointer te double; then the use of the function is poriable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and is
measured in bytes. chars have no alignment requirements; everything else must
have an even address.

On the Honeywell 6000, a pointer corresponds to a 36-bit integer; the word part
is in the left 18 bits, and the two bits that select the character in a word just to their
right. Thus char pointers are measured in units of 2'% bytes; everything else is
measurad in vunits of 2'® machine words. double quantities and aggregates contain-
ing them must lie on an even word address (0 mod 2'%).

The IBM 370 and the Interdata 8/32 are similar. On both, addresses are meas-
ured in bytes; elementary objects must be aligned on a boundary equal to their
length, so pointers to short must be 9 mod 2, to int and £fleat 0 mod 4, and to
double 0 mod 8. Apgregates are aligned on the strictest boundary required by any
of their constituents.

15. Constant expressions

In several places C requires expressions which evaluate to a constant: after
case, as array bounds, and in initializers. In the first two cases, the expression can
involve only integer consilants, character constants, and sizeof expressions, possi-
bly connected by the binary operators

+ - % J % & | * <2 53 mw lm &£ > L= b=

or by the unary operators

or by the ternary operator
?:

Parentheses can be used for grouping, but not for function calls.

More latitude is permitted for initializers; besides constant expressions as dis-
cussed above, one can also apply the unary & operator to external or static objects,
and to external or static arrays subscripted with a constant expression. The unary &
can also be applied implicitly by appearance of unsubscripted arrays and functions.
The basic rule is that initializers must evaluate either to a constant or to the address
of a previously declared external or siatic object plus or minus a constant.

16. Portability considerations

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive, but to point out the main
ones.

212 THE € PROGRAMMING LANGUAGE APPENDIX A

Purely hardware issues like word size and the properties of floating point arith-
melic and integer division have proven in practice to be not much of a problem.
Other facets of the hardware are reflected in differing implementations. Some of
these, particularly sign extension (converting a nepative character into a negative
integer) and the order in which bytes are placed in a word, are a nuisance that must
be carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers
varies from machine to machine, as does the set of valid types. Nonetheless, the
compilers all do things properly for their own machine: excess or invalid register
declarations are ignored.

Some difficulties arise only when dubious coding practices are used. Il is
exceedingly unwise to write programs that depend on any of these properties.

The order of evaluation of funciion arguments is not specified by the language.
It is right to left on the PDP-11, left to right on the others. The order in which side
effects take place is also unspecified.

Since characler constants are really objects of type int. multi-character charac-
ter constants are permitted. The specific implementation is very machine depen-
dent, however, because the order in which characters are assigned to a word varies
from one machine to another,

Ficlds are assigned to words and characters to integers right-to-left on the PDP-
11 and left-to-right on other machines. These differences are invisible to isolated
programs which do not indulge in type punning (for example, by converting an int
pointer to a char pointer and inspecting the pointed-io storage), but must be
accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most
nolably, the current PDP-11 compiler will not initialize structures containing bit-
fields, and does not accept a few assignment operators in cerlain contexts where the
value of the assignment is used.

17. Anpachronisms
Since C is an evolving language, certain obsolete constructions may be found in
older programs. Although most versions of the compiler support such anachron-
isms, ultimately they will disappear, leaving only a portability problem behing.
Earlier versions of C used the form =op instead of op= for assignmeni opera-
tors. This leads to ambiguities, typified by

x=-1

which actually decremenits x since the = and the - are adjacent, but which might
easily be intended to assign -1 lo x.

The syntax of initializers has changed: previously, the equals sign that intro-
duces an initializer was not present, so instead of

int =x =N
one used
int % 1;

The change was made because the initialization

APPENDIX A C REFERENCE MANUAL 213

int £ (142}

resembles a function declaration closely enough to confuse the compilers.

214 THE € PROGRAMMING LANGUAGE AFPENDIX A

18. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as
an exact statement of the language.

18.1 Expressions
The basic expressions are:

expression.
primary
* EeXpression
& expression
— xpression
| expression
~ expression
++ lvalue
— lvalue
fvalie ++
fvalue —
sizeof expression
{ type-name) expression
expression binop expression
eXpression 7 expression i expression
tvalue asgrnop expression
EeXpression , expression

primary:
identifier
constant
String
{ expression)
primary e:qoress:’on-ﬁsrm)
primary [expression]
Ivafue . identifier
primary => identifier

value:
identifier
primary [expression]
halue . identifier
primary —> identifier
* exXpression

{ hvalue)
The primary-expression operators
0 [. -»
have highest priority and group left-to-right. The unary operators

APPENDIX A C REFERENCE MANUAL 215

* & - ! " ++ —— szizeof [tvpe-name)

have priority bzlow the primary operators but higher than any binary operator, and
group right-to-left. Binary operators and the conditional operator all group left-to-
right, and have priority decreasing as indicated:

binop:
* / %
+ =

- <

« > <= =

- I=

&

1

Bl

1

7

Assignment operators all have the same priority, and all group right-to-lef?.

asenop:
= 4= - w*= /: = e o= &= S l =

The comma operator has the lowest priority, and groups left-to-right.

18.2 Declarations

declaration.
decl-specifiers fni_r—declarator-lisrm &

decl-specifiers:
pe-specifier dec!-spec.gﬁersm
sc-specifier decl-specifiers,,

sc-specifier:
auko
static
extern
register
typedef

216 THE C PROGRAMMING LANGUAGE APPENDIX A

type-specifier.
char
short
int
long
unsigned
float
double
Striict-or-union-specifier
typedef-name

init-declarator-fist:
init-declarator
init-declarator , init-declarator-list

init-deciarator:
declarator initia h’zerm

declarator:
identifier
{ declarator)
* declarator
declarator (}
declarator { constani-expression,]

strict-or-union-specifier:
struct | struct-decl-list }
struct identifier { siruct-decl-list }
struct identifier
union { struct-decl-fist }
union identifier | struct-decl-list }
union identifier

strict-deci-fise:
struct-declaration
struct-declaration strtict-decl-list

struci-declaration:
tvpe-specifier struct-declarator-list ;

struci-declarator-list:
struct-deciararor
struct-declarator , siruct-declarator-list

APPENDIX A

C REFERENCE MANUAL

struct-deciarator:
declargtor
declarator : constant-expression
I constant-expression

initializer:
= expression
{ initializer-fist }
(initializer-list ,)

initializer-list:
expression
initializer-list , initiglizer-list
{ initigfizer-fist)

type-name:
wpe-specifier abstract-deciarator

abstract-declarator:
empty
{ abstract-dectaraior }
* abstract-declarator
abstract-declarator ()
absiract-declarator | constant-expression,,, 1
typedef-name:
identifier

18.3 Statements

compound-statement:
{ dedararfon—ﬁsfm szaremem—ﬁsrw }

declaration-list:
declaration
declaration declaration-list

siatement-list:
siatement
Statement statement-fist

217

218 THE C PROGRAMMING LANGUAGE APPENDIX A

siqtement;
compound-statement
expression ;
if (expression) statement
.1f { expression) statement else statement
while { expression) statement
do statement while ([expression) ;
for &.'qu"essﬁrm-;fqW g expression-2w g expression-j’ﬂpr) statement
switch (expression) statement i
cAase constant-expression . siatement
defaunlt : swatement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

18.4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

Sunction-definition:
wpe—specrﬁerm Sunction-declarator function-body

fimction-deciarator:
declararor (parameter-list_,)

parameter-list;
identifier
identifier , parameter-list

Junction-body:
type-decl-list function-statement

Junction-statement:
{ dechrarfon-ﬁsrm Statemeni-list }

APPENDIX A C REFERENCE MANUAL 219

data-definition;
extern, !ype-spec:_r’ﬁerw init-declarator-fisy_ ;
static o type-specifier, 2 m.r'r-declara:or-ﬁstw ;

18.5 Preprocessor

#define identifier token-string
#define identifier(identifier , ... , identifier) token-string
#undef identifier

#include "filename "
#include <filename>

#1if constan-expression
#ifdef identifier

#ifndef identifier

felse

#endif

#1line consian! idertifier

+ addition operator 37, 188

& address operator 89, 187

\ backslash character 7, 35, 180

& bitwise AND operator 44, 190

* bitwise exclusive OR operator 44, 190

} bitwise inclusive OR operator 44, 190

?: conditional expression 47, 191

—— decrement operator 16, 42, 102, 187

/ division operater 10, 37, 188

== equality operator 17, 38, 190

\ escape characler 7, 35, 180

> greater than operator 38, 189

»=grealer than or equal to operator 38,
189

++ increment operatotr 16, 42, 102, 187

* indirection operator 89, 187

!=inequality operator 14, 38, 190

<« left shift operator 45, 189

< less than operator 38, 189

<= less than or cqual to operator 38, 189

&& logical AND operator 19, 38, 45, 190

! logical negation operator 38, 187

! | logical OR operator 19, 38, 45, 191

% modulus operator 37, 188

» multiplication aperator 37, 18§

= one's complement operator 45, 187

»» right shift operator 45, 189

—» struciure pointer operator 122, 185

- subtraction operator 37, 138

— unary minus operator 37, 187

%0 nuli character 27, 35

abstract declarator 199

access mode, file 152, 162

addition operator, + 37, 188

additive operators 188

address arithmetic 3, 96

address of variable 24, §9

address operator, & 89, 187

aggrepale 198

alignment by union 174

221

INDEX

alignment, field 138, 196

alignment restriction 130, 133, 140, 157,
173, 210

alloc function 97, 175

allocator, storage 96, 133, 136, 210

ambiguity, if-else 52, 201

anachronisms 212

a.our 6, 68

argc argument count 110

argumeni conversion 42

argument, function 6, 23, 186

argument list 6

argument, pointer 95

argument, subarray 95

arguments, command-ling 110

arguments, #define 87

arguments, variable number of 71

argv argument vector 110

arithmetic conversions 39, 184

arithmetic operators 37, 188

arithmeltic, pointer %0, 94, 96, 113, 129, 188

arithmetic types 183

array, character 18, 25, 99

array declaration 20, 195

array, sxplanation of subscripting 93, 210

array initialization 83, 109, 198

array, initialization of two-dimensional 1035

array, mulli-dimensional 103, 210

array name argument 3, 24, 71, 95, 105,
205 i

array name, conversion of 94, 185

array of pointers 105

array size, default 84, 109, 124, 195

array, storage order of 104, 210

array subscripts, two-dimensional (04

array, two-dimensional 103

arrays and pointers 93, 110

arrays of structures 123

ASCII character set 17, 35, 40, 127

asm keyword 180

222 THE C PROGRAMMING LANGUAGE

assignment, conversion by 41, 191
assignment expression 135, 19, 47, 191
assignment, mulliple 19

assignment operators 38, 44, 191
assignment statcment, nested 15, 19
assignment suppression, scanf 148
associalivily of operators 48, 185
atof function 69

atoi function 39, 58

auto storage class 23, 28, 192
autematic variable 23, 28, 72

automatics, initialization of 28, 37, 82, |98

autematics, scope of 76

\ b backspace character 7

backslash character, s 7, 35, 180
backspace character, \i 7

pinary search function 54, 125, 129
binary tree 130

bit fields 136, 196

bit manipulation idioms 137
bitcount function 47

bitwise AND operator, & 44, 190
bitwise exclusive OR operator, ~ 44, 190
bitwise inclusive OR operator, | 44, 190
bitwise operators 44, 190

block 51, &1, 201

block structure 3, 51, 81, 201
blocks, initialization in 201
boundary condition 17, a1, 109
braces 6,9, 51

braces, position of 10

break statement 56, 61, 203
buffered getchar 162

buffered input 160

byte 126, 188

%c conversion 1

C preprocessor 86

C program verifier {4inf) 3
calculator program 70, 72, 75, 150
call by reference 3, 24, 91

call by value 3, 24, 71, 91, 186
calloc storage allocator 157

case prefix 55, 202

cast operator 42, 133, 157, 187, 199
catprogram 131, 133, 154

cc command 6, 68, 144

cfree 157

char type 9, 34, 182, 193
character, \ escape 35

character array 18, 2§, 99

character array initialization 84, 199
character constant 17, 35, 150
character constant, octal 35
character count program 16
character inputfoutput 13
character, negative 183

character pointer 99

character set, ASCIL 17, 35, 40, 127

character set, EBCDIC 35, 40

character, signed 40, 182

character string 7, 36, 80, 18]

character testing functions 136

character-integer conversion 21, 39, 183

close system call 163

coercion operator 42

comma operator 58, 192

command-line arguments 110

comment B, 179

commuitative operators 37, 49, 185

comparison, peinter 98, 189

compilation, separate 3, 65, 76, 203

compilec control lines 207

compiling a C program 6, 23

compiling multiple files 68

compound statement 51, 81, 201

conditional compilation 208

conditional expression, ?: 47, 191

constant, character 17, 35, 180

constant, double 181

constant expression 35, 53, 211

constant, floating 10, 181

constant, hexadecimal 35, 180

constant, integer 10, 180

constant, long 335, 130

constant, octal 35, 180

constant, symbolic 12, 14, 18, 86, 127

constants 180

continue statement 62, 203

conversien by assignment 41, 191

conversion by return H, 203

conversion, character-integer 21, 39, 183

conversion, double-float 42, 184

conversion, float-double 41, 69, 184

conversion, floating-integer 42, 184

conversion, format 10

conversion, function argument 42, 186

conversion, input 92

conversion, integer-character 41, 183

conversion, integer-floating 10, 184

conversion, integer-long 183

conversion, integer-pointer 138, 210

conversion, integer-unsigned 184

conversion, long-integer 183

conversion of array name 94, 185

convecsion of function 185

conversion operator, explicit 187, 210

conversion, pointer 133, 188, 210

conversion, pointer-integer 102, 184, 188,
210

conversion rules 41

conversion, truth value 4]

conversion, unsigned-integer 184

conversions, arithmetic 39, 184
copy function 20

copy program 15

cp program 163

creat system call 162

%d conversion 11

data definitions 205

data structure, regursive 131
date conversion 103, 119, 121
day_of_year function 104, 122
declaration, array 20, 195
declaration, extern 30
declaration, field 137, 196
declaration, FILE 151
declaration, implicit 208
declaration, mandatory 8, 36, 76
declaration of external variable 28
declaration of function 194

declaration of function, implicit 68, 186,

208
declaration of pointer 90, 95, 194
declaration, register 81
declaration, static 80
declaration, storage class 192
declaration, structure 119, 196
declaration, syntax of 36
declaration, 1ype 194
declaration, typedef 140, 192, 200
declaration, union 138, 196
declaration vs. definition 76
declarations 192
declarator 193
declarator, abstract 199

decrement operator, — 16, 42,102, 187

default array size 84, 109, 124, 195
default initiatization B4, 198
default prefix 55, 203

delensive programming 53, 56
$define 12, 86, 207

#define arguments 87

#define, too-long 86

definition, external 28, 204
definition, function 23, 67, 204
dehnition of exiernal variable 30

dependency, machine 40, 138, 139, 141

derived types 3, 9, 183
descriptor, file 159

directory 169

dir.h directory structure 169
division, integer 10, 37, 212
division operalor, / 10, 37, 188
DO locp idiom 57

do statement J, 59, 202
do-nothing funclion 67
double constant 18]

double quote character 7, 18, 36

INDEX 223

double (ype 9,16, 34, 193

double-float conversion 42, 184

E notation 34

EBCDIC character set 35, 40

echo program 111

efficiency 47, 65, 81, 85, 108, 127, 133,
143, 160, 176

#else 208

else statement 19

else-if 21,53

empty function 67

empty statement 16, 204

end of file 14, 144

end of string 27, 35

#endif 208

entry 180

EQF, value of 14, 40, 144

equality operator, == 17, 38, 190

equality operators 38, 190

escape character, \ 7, 35, 180

escape sequence 7, 17, 36, 180

evaluation, order of 19, 37, 45, 49, 50, 59,
75, 87, 91, 185, 212

exit, _exit 154

explicit conversion operator 187, 210

explicil type conversion 42, 133, 157

exponentiation 22

expression 185

expression, assignment 15, 19, 47, 191

expression, constant 35, 55, 211

expression, parenthesized 186

expression, primary 183

expression statement 51, 53, 201

expression, subscript 20

expression, type of 12

expression, unary 187

expressions, order of evaluation of 49, 185

extern declaration 30

extern storage class 192

external data definitions 205

external definition 28, 204

external names, length of 33, 179

external static variables 30

external variable 28, 72

external variable, declaration of 28

external variable, definition of 30

externals, initialization of 37, 72, 77, 82

externals, scope of 76, 206

%f conversion 11, 16

Eclose 153

fgets 155

field alignment 138, 196

field declaration 137, 196

field width 137

fields, restrictions on 138, 197

file access 151, 159

!

224 THE C PROGRAMMING LANGUAGE
y

file access mode 152, 162

file appending 152, 164

file concatenation 151

file copy program 14, 161

file creation 152, 159

FILE declaration 151

file descriptor 139

file, end of 14, 144

file inclusion 86, 207

file opening 151, 159

file pointer 151, 165

file pratection mode 162

file, rewind 164

_fillbuf funciion 168

float lype 9, 34, 193

float-double conversion 41, 69, 184

floating constant 10, 181

floating types 183

floating-integer conversion 42, 184

fopen 131

fopen function 167

for statement 3, 11, 16, 56, 202

formal parameter 23, 81, 95, 204

format conversion 10

fermatied input 11, 147

formatied cutpul 10, 145

fortran keyword 180

fprintf 152

fputs 155

free function 97, 177

free-form input 92

fscanf 152

Sfsize program 171

function argument 6, 23, 186

function argument conversion 42, 136

function call semantics 186

function cail syntax 186

function, conversion of 185

function, declaration of 194

function definition 23, 67, 204

function, implicit declacation of 68, 186,
209

function names, length of 33, 179

function, pointer to 114, 141, 209

function retorn value 23

functions, character testing 156

functions, operations permitted on 209

fundamental types 3, 9, 182

getbits function 45

getc 152

getc macro 166

getch function 79

getchar 13, 14

getchar, buffered 162

getchar macre 152

getchar, unbuffered 161

getchar, valug of 40

getint function 93

getline function 26, 67

getop function 78

getword function 127

goto slalement 62, 204

greater than operator, > 38, 189

greater than or equal to operator, »= 38,
189

grep program 65, 112

hash function 1335

hash table 134

hexadecimal constant 35, 180

#if 208

if statement L7

#ifdef 208

if-else ambiguity 52, 201

if-else statement 3, 19, 51, 201

$ifndef 208

iliegal pointer arithmetic 98, 99

implicit declaraticn 208

implicit declaration of funciion 68, 186, 209

#include 86, 143, 207

inconsistent type declaration 70

increment aperator, ++ 16, 42, 102, 187

indentation 10, 16, 52 :

index function a7

indirection opcrator, = 89, 187

inequality operator, != 14, 38, 190

infinite loop 57

intix notition 72

information hiding 65, 66, 73, 75, 8]

initialization 37, 198

initialization, array 83, 109, 198

initialization. character array §4, 199

initialization, default 84, 19§

initialization in blocks 201

initialization of automatics 28, 37, 82, 198

initiatization of externals 37, 72, 77, 82

initialization of registers 82

initialization of statics 37, §2, 198

initialization of struclure arrays 124

initialization of two-dimensional array 105

initialization, poinler 97, 129

initialization, structure 120, 121, 198

initializer, permitted form ol 211

inode entry 169

input and output, 1erminal 13, 144, 160

input, buffered 160

input, characler 13

input conversion 92

input, formatted 11, 147

input, pushback of 79

input redirection 144

input, unbuffered 160

install function 136

int type 9, 34, 193

integer constant 10, 180

integer-character conversion 41, 183

integer-floating conversion 10, 184

integer-long conversion 183

integer-pointer conversion 188, 210

integer-unsigned conversion 184

integral types 183

Interdata UNIX 2

internal names, lengih of 33

internal static variables 80

/() redirection 144, 152, 160

isalpha macro 27, 156

igdigit macro 127, 156

islower macro 156

isspace macro 156

isupper macro 145, 156

itoa function 60

keyword count program 125

keywords, list of 180

label 62, 204

labeled statement 204

%1d conversion 16

leap year computation 37

lefi shift operator, << 45, |89

length of names 33, 179

length of string 27, 36, 99

less than operator, < 38, 189

less than or equal 1o operator, <= 38, 189

lexical conventions 179

lexical scope 205

lexicographic sorting 114

library function 6, 7, 65, 76

library, standard 4, 92, 96, 127, 143, 159,
165

#line 208

line count program 17

fint program verifier 3, 80, 68, 103, 14}

list directory program 169

list of keywords 180

loading ltom standard library 144

loading multiple Liles 63

local variable 28

logical AND operator. && 19, 38, 45, 190

logical expression, value of 41

logical negation operator, ! 38, 187

logical operators 38

logical OR operator, 11 19, 38, 45, 191

long constant 35, 180

long type 9, 16, 34, 182, 193

longest line program 286

long-integer conversion 183

lookup function 135

loop, for |l

loop, infinite 57

toop, test at the bottom 59

INDEX 225

loop, test a1 the top 17, 59, 108

loop, while 9

lower ¢ase program 145

lower funclion 40

fs command 169

lseek syslem call 164

Ivalue 183

machine dependency 38, 40, 43, 81, 98,
103, 130, 133, 138, 139, 141, 166, 173,
212

macro preprocessor 86, 207

macros with arguments 87

magic number 12

main function 6

mandatory declaration 8, 36, 76

member name, structure 120, 197

missing storage ¢lass specifier 193

missing type specifier 193

modularization 22, 25, 30, 72, 73, 106

modulus operator, % 37, 188

month_day function 104, 123

month_name function 109

morecors flunction 176

multi-dimensional array 103, 210

multiple assignment 19

multiple files, compiling 68

maultiplication operator, « 37, 188

multiplicative operators 188

multi-way decision 21, 33

\n newline character 7, 17

name, symbolic 12

names, length of 33, 179

negative character 40, 183

nested assignment statement 15, 19

nested structore 120

newline character, \n 7, 17

null character, \0 27, 3%

NULL pointer 97, 192

null statement 16, 204

null string 3¢

number of arguments, variable 71

numbers, size of 9, 16, 34, 182

numcmp function 117

numeric sorying 114

%o conversion 11

octal character constam 33

octal constant 35, 180

one's complement operator, = 45, 187

open sysiem call 162

operations permitted on functions 209

operations permitted on pointers 99

operations permitted on structures 209

operations permitted on unions 209

operators, additive 188

operators, arithmetic 37, 188

operalors, assignment 38, 46, 191

226 THE C PROGRAMMING LANGUAGE

aperators, associativity of 48, 185

operators, biltwise 44, 190

operatots, commutative 37, 49, 185

operators, equality 38, 190

operators, logical 38

cperalors, multiplicative 138

operaiors, precedence of 15, 48, 91, 122,
123, 185, 215

operators, relaunnal 14, 38, 189

operators, shift 44, 189

order of evaluation 19, 37, 45, 49, 50, 59,
75, 87, 91, 185, 212

order of evaluannn of expressnons 49, 185

origin, subscript 20

output, character 13

cuiput, formatted 10, 145

output redirection 144

overflow 38, 185 -

parameter, formal 23, 81, 95, 204

parenthesized expression 186

pattern finding program 66, 112, 113

PDP-11 UNIX 2

permitted form of initializer 211

permitted on functions, operations 209

permitted on structures, operations 209

permiited on unions, operations 209

pipe 144, 160

pointer argument 95

pointer arithmetic 90, 94, 96, 113, 129, 188

pointer arithmetic, illegal 98, 99

pointer arithmetic, scaling in 94, 98

pointer, character 99

pointer comparison 98, 189

pointer conversion 133, 188, 210

pointer, declaration of 90, 95, 194

pointer, file 151, 165

pointer initizlization 97, 129

pointer, NULL 97, 192

pointer subtraction 98

pointer to function 114, 141, 209

pointer to structure 128

pointer-integer conversion 102, 184, 188,
210

pointers 3, 24

pointers and arrays 93, 110

pointers and subscripts 93

pointers, array of 105

pointers, operations permilied on 99

Polish notation 72

pop function 75

portability 2, 3, 35, 40, 45, 71, 103, 139,
141, 143, 145, 166, 173, 212

position of braces 10

postfix ++and — 42, 101, 187

power funciion 23, 24

precedence ol operators 15, 48, 91, 122,
123, 185, 215

v

prefix ++ and — 42, 102, 187

preprocessor, macre 86, 207

primary expression 185

printd function 85

printf 7,11, 145

program arguments 110

program, calculator 70, 72, 75, 150

program, car 151, 153, 154

program, character count 16

program, copy 15

program, cp 163

prograrm, echo 111

prograrn, file copy 14, 161

program format 10, 16, 130,179

program, fsize 171

program, grep &5, 112

program, keyword count 125

program, line count 17

program, list directory 169

program, longest line 26

program, lower case 145

program, pattern finding 66, 112, 113

program readability 19, 39, 57, 60, 61, 85

program, sorting 106, 115

program, table iookup 134

program, temperature conversion 8§

program, trailing blanks 61

program verificr, finr 3, 50, 68, 103, 14}

program, white space count 20, 55

program, word count 1§, 130

protection mode, file 162

push function 75

pushback of input 79

pute 152

putc macro 166

putchar 13, 144

putchar macro 152

read system call 160

readability, program 10, 15, 19, 33, 39, 47,
52, 57, 60, 61, 83, 8S, 141

readlines function 107

recursion 3, 84, 131, 132, 186

recursive daia structure 131

redirection of 1/0 144

register declaration 8l

register storage class 81,

registers, initialization of 82

relational expression, value of 41

relational operators 14, 18, 189

reserved words 33, 180

restrictions on fields 138, 197

restrictions on registers 212

restrictions on structures 121, 20%

restrictions on types 195

restrictions on vaions 140, 209

return, conversion by 70

192

return statement 23, 68, 70, 203

return, fype conversion by 7Q, 203

reversge function 59

reverse Polish notation 72

rewind file 164

right shift operator, => 45, 189

rules, scope 76, 205

rules, type conversion 41, 184

%5 conversion 11, 27

sbrk system call 175

scaling in pointer arithmetic 94, 98

gcanf 147

scanf assignment suppression 148

scientific nomation 34

scope of automatics 76

scope of externals 76, 206

scope rules 76, 205

seek sysiem call 164

sell-referential structure 131, 197

semantics, structure reference 186

semicelon 9, 13, 16, 51, 53

separale compilation 3, 65, 76, 205

sequencing of statements 201

Shell sort 58, 108

shift operators 44, 189

short type 9, 34, 182, 193

side effects 50, 87, 185

sign exlension 40, 41, 166, 212

signed character 40, 182

single quote character 17

size of numbers 9, 16, 34, 182

sizeof operator 126, 137

sort function 58, 108, 116

sorting, lexicographic 114

sorting, numeric 114

sorting program 106, 115

sorting text lines 105

specitier, missing storage class 193

specifier, missing type 193

specitier, storage class 192

specifier, type 193

sprintf 150

squeeze function 43

squirrel 131

sscanf 150

slandard ercor 160

standard input 144, 160

standard library 4, 92, 96, 127, 143, 159,
165

standard library, loading from 144

standard output 144, 160

stat definitions 171

stat struclure 170

stat system cali 170

staternent grouping 3, 51

slalement terminator 9. 51

INDEX

statemenis 201

statements, sequencing of 201
stat.h 170

static declaration 80

static storage class 28, 80, 192
static variables, external 80
gtatie variables, internal 80
statics, initialization of 37, 82, 193
stderr 132, 154

stdin 152

stdic.h contents 166

gtdic.h header file 143

gtdout 152

storage allocator 96, 133, 136, 210.
storage allocator, calloe 157
storage class, auto 23, 28, 192
storage class declaration 192
storage class, extern 192

storage ¢lass, register 81,192
storage <lass specifier 192

starage class specifier, missing (93
storage <lass, static 28, 80, 192
starage order of array 104, 210
streat function 44

stromp function 101

gtrepy function 100

string constant 7, 18, 35, 99, 18]
string, end of 27, 33

string, length of 27, 36, 99

string, type of 186

strlen function 36, 95, 98
strsave function 103

structure arrays, initialization of 124
structure declaration 119, 196
structure initializalion 120, 121, 198
structure member name 120, 197
structure member operator, . 120, 18%
structure, nested 120

structure pointer operator, —> 122, 185
structure, pointer 1o 128

structure reference semantics 186
structure reference syntax 186
steucture, self-referential 131, 197
structure tag 119, 197

structures, arrays of 123

structures, operations permitted on 209
structures, restrictions on 121, 209
subarray argument 95

subscript expression 20

subscript origin 20

subscripting, explanation of 93, 210
subscripts and pointers 93
subtraction operator, — 37, 188
subtraction, pointer 98

swap function 92, 117

switch statement 3, 22, 54, 73, 202

227

228 THE C PROGRAMMING LANGUAGE

symbolic constant 12, 14, 18, 86, 127
symbolic constants. lengih of 33
syntax notatton 182

syntax of declaration 36

synlax of variable names 33
syntax, structure reference 186
syntax summary 214

system 157

tab character 7

table lookup program 134

tag, structure 119, 197

tag, union 197

termperature conversion program R
terminal input and output 13, 144, 160
lermination, program 133, 154

g5t at the bottom loop 59

test at the top loop 17, 5%, 108
tex1 lines, sorting 103

token replacement 207

tolower macro 145, 156

ton-long #define 36

toupper macro 156

trailing blanks program 6l

tree, binary 130

tree function 132

treeprint funclion 133
truncalion 10, 37, 70

truth value conversion 41
two-dimensional array 103
two-dimensional array, initializalion of 105
two-dimensional array subscripts 104
ype, char 9, 34, 182, 193

type checking 3, 133

type conversion by return 70, 203
lype conversion, explicit 42, 133, 157
type conversion operator 42

lype conversion tules 41, 184

type conversions 39

type declaration 194

lype declaration, inconsistent 70
wpe, double 9, 16, 34, 193

type, float 3, 34, 193

type function 127

lype, int 9, 34, 193

i¥pe, long 9, 16, 34, 182, 193

type mismatch 70

type names 199

type of a variable 8

type of expression 12

iype of string 846

type, short 9, 14, 182, (93

type specifier 193

type specifier, missing 193

type, unsigned 34, 45, 183, 193
typedef declaration 140, 192, 200
typedef, use of 173

p47261

typeless language 2

lypes, arithmetic 183

types, derived 3, 9, 183
types, floating 183

types, fundamental 3, 9, 182
1ypes, integral 1383

types, restrictions on 195
types.h (70

unary expression 187

unary minus operator, — 37, 187
unbuffered getchar 161
unbuffered input 160
#undef 207

uhderflow 38

underscore character 33, 179
ungete 156

ungetch function 79
union, abgnment by |74
union declaration 138, 196
umion tag 197

unions, operalions permitted on 209

unions, restrictions on 140, 209
UNIX file system 159, 169
UNIX, Interdata 2

UNIX operating system 2, 4
UNIX, PDP-11 2

unlink system call 163
ungigned type 34, 45, [83, 193
unsigned-integer conversion [84
use of typedef 173

value of EOF 14, 40, 144

vaiue of getchar 40

value of togical expression 41
value of relational expression 41
variable, address of 24, 39
variable, automatic 23, 28, 72
variable, external 28, 72

varigble names, length of 33
variable names, syntax ol 33
variable number of arguments 71
while staterment 3, 9, 56, 202
white space count program 20, 55
word count program 18, 130
write system call 160
writelines function 1Q7, 108
%x conversion 11

Zero, omitted test against 52, 99, 101

