Machine Structures 2 catch up exam solution

Exercise 1 : (4 points)

1. Digital electronics are electronics where <u>logical values 0 and 1</u> are the main circuit signals. (**1 point**)

2. The truth table and the logical expression of a tristate buffer : (1 point)

А	С	S	
0	0	Z	lc
1	0	Z	
0	1	0	
1	1	1	

ogical expression : $\begin{cases} if (C=0) \Rightarrow S=Z \\ if (C=1) \Rightarrow S=A \end{cases}$

3. The difference between synchronous and asynchronous sequential circuits, is that the synchronous keep track of the <u>clock</u> while executing. Whereas, the asynchronous don't. (1 point)

4. The schematics of RS-Latch and its truth table : (1 point)

R	S	Q	\overline{Q}
1	0	0	1
0	1	1	0
0	0	Q`	<u>Q</u> `
1	1	0	0

Exercise 2 : (5 points)

Case A = 0 and B = 0 : (1 point)

Case :
$$A = 0$$
 and $B = 0$

Case A = 1 and B = 0 : (1 point)

Case : A = 1 and B = 0

Case A = 0 and B = 1 : (1 point)

Case : A = 0 and B = 1

Case : A = 1 and B = 1

The circuit truth table : (0,5 point)

А	В	Q	
0	0	Q'	Memorize
0	1	0	Reset to 0
1	0	1	Set to 1
1	1	0	Reset to 0

This asynchronous sequential circuit could be used as <u>RS-Latch</u> (A as Set and B as Reset) (0,5 point)

Note : Despite the case A=1, B=1 is a reset, the circuit is still an RS-Latch. Because the case (1,1) is not supposed to be used in an RS-Latch.

Exercise 3 : (5 points)

1. Mux 2-1 Multiplexer :

Step 1 : Global Scheme (0,5 point)

Step 2 : Truth Table (0,5 point)

E0	E1	S	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

<u>Step 3</u> : Canonical Disjunctive Functions (0,5 point)

 $Output(E0,E1,S) = \overline{E0} \cdot E1 \cdot S + E0 \cdot \overline{E1} \cdot \overline{S} + E0 \cdot E1 \cdot \overline{S} + E0 \cdot E1 \cdot \overline{S}$

Step 4 : Karnaugh Map (0,5 point)

E0E1				
S	00	01	11	10
0	0	0	[1	1)
1	0	[1	1	0

Output(E0,E1,S) = $E0 \cdot \overline{S} + E1 \cdot S$

Step 5 : Schematics (1 point)

2. Mux 4-1 Multiplexer : (1 point)

3. Mux 3-1 Multiplexer : (1 point)

Note : Putting only E3 to Z is not a valid solution. Because circuits don't behave normally with a Z value in their entries.

Exercise 4 : (6 + 1 bonus point)

Step 1 : Global Scheme (1 point)

- U : for UP
- D : for DOWN
- M : for Motor

<u>Step 2</u> : F.S.M. (1 point)

Step 3 : Transition Table (1 point)

Current State	U	D	Next State
S0	0	0	S0
S0	0	1	S0
S0	1	0	S1
S0	1	1	S0
S1	0	0	S1
S1	0	1	S0
S1	1	0	S1
S1	1	1	S1

<u>Step 4</u> : Encoded States Table and Outputs Table (1 point)

State	S	М
S0	0	0
S1	1	1

Step 5 : Table de Transition Encodée (1 point)

S	U	D	S'
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Step 6 : Logical Functions (1 point)

M(S) = S (directly deducted)

 $\mathsf{S'}(\mathsf{S},\mathsf{U},\mathsf{D})=\mathsf{U}\!\cdot\!\overline{\mathsf{D}}+\mathsf{S}\!\cdot\!\overline{\mathsf{D}}+\mathsf{S}\!\cdot\!\mathsf{U}$

Step 7 : Schematics (1 point)

