Machine Structures 2 exam solution

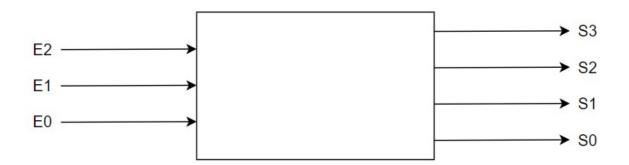
Exercise 1 : (4 points)

1. The main 2 values to represent information in digital systems are <u>logic values 0 and 1</u>. (1 point)

2. We have 2 universal gates : NAND and NOR symbolized as follow : (0,5 point)

They are called universal because using one of them, it is possible to reconstruct any possible digital circuit.(0,5 point)

3. The difference between Moore and Mealy machine regarding their output is that, Mealy machine outputs on <u>State</u>, and Mealy machine outputs on <u>Transition</u>. (1 point)

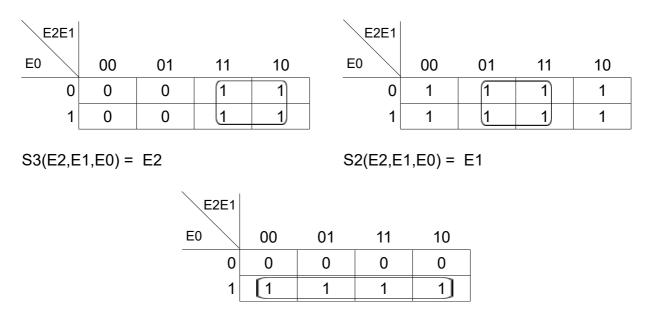

4. Truth Table of the circuit is as follow : (1 point)

А	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Exercise 2 : (10 points)

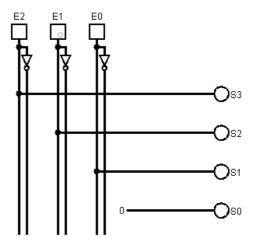
1.

Step 1 : Global Scheme (1 point)

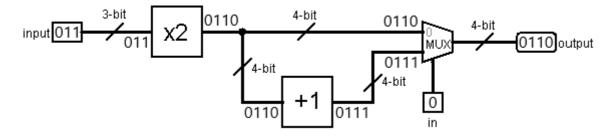


Step 2 : Truth Table (1 point)

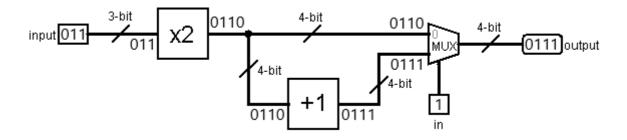
E2	E1	E0	S3	S2	S1	S0
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
0	1	1	0	1	1	0
1	0	0	1	0	0	0
1	0	1	1	0	1	0
1	1	0	1	1	0	0
1	1	1	1	1	1	0


Step 3 : Disjunctive Canonical Functions (1 point)

Step 4 : Karnaugh Map (1 point)

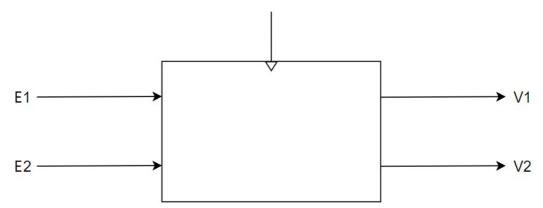


S1(E2,E1,E0) = E0

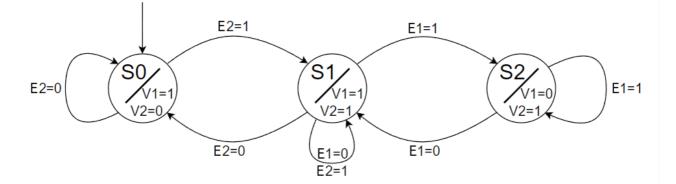

Note : This circuit is actually a left shifter of 1 bit.

- 2. This circuit has no gates, then there is no universal transformation to do on it. (2 point)
- **3.** The execution in the case of n = 0: (1 point)

The execution in the case of n = 1: (1 point)



4. The mathematical formula for n = 0 is y=2x and for n = 1 is y=2x+1 (0,5 point)


The purpose of the circuit is to generate *even* and *odd* numbers following the previous formulas. (0,5 point)

Exercise 3 : (6 + 1 points)

Step 1 : Global Scheme (1 point)

Step 2 : F.S.M. (1 point)

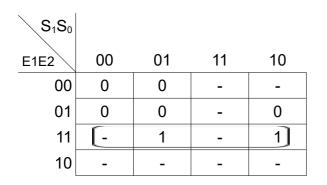
Step 3 : Transition Table (1 point)

Current State	E1	E2	Next State
S0	0	0	S0
S0	0	1	S1
S0	1	0	-
S0	1	1	-
S1	0	0	S0
S1	0	1	S1
S1	1	0	-
S1	1	1	S2
S2	0	0	-
S2	0	1	S1
S2	1	0	-
S2	1	1	S2

Step 4 : Encoded Stat	es Table and Out	tputs Table (1 point)
-----------------------	------------------	-----------------------

State	S ₁	S ₀	V1	V2
S0	0	0	1	0
S1	0	1	1	1
S2	1	0	0	1

Step 5 : Table de Transition Encodée (1 point)

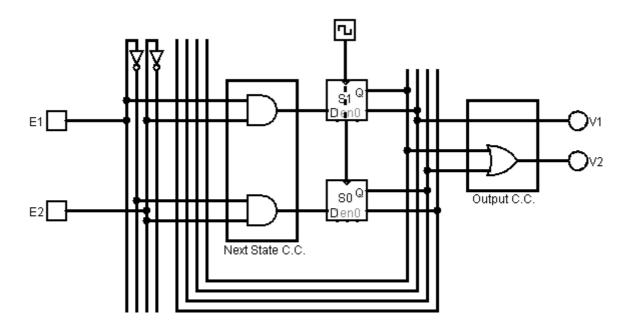

S ₁	S ₀	E1	E2	S'1	S'0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	-	-
0	0	1	1	-	-
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	-	-
0	1	1	1	1	0
1	0	0	0	-	-
1	0	0	1	0	1
1	0	1	0	-	-
1	0	1	1	1	0

Note : The State S3 is an impossible state in the table, then it becomes *don't care*.

Step 6 : Logical Functions (1 point)

V1(S₁,**S**₀) = \overline{S}_1 (directly deducted) **V2(S**₁,**S**₀) = **S**₁+**S**₀ (S3 is supposed *don't care*. Then, a xor ⊕is also a correct answer)

<



$\mathbf{S}_{1}\mathbf{S}_{0}$				
E1E2	00	01	11	10
00	0	0	-	-
01	1	1	-	1
11	-	0	-	0
10	-	-	-	-

 $S'_1(S_1,S_0,E1,E2) = E1 \cdot E2$

 $S'_0(S_1,S_0,E1,E2) = \overline{E1} \cdot E2$

<u>Step 7</u> : Schematics (1 point)

